JIBTEPATYPA

- 1 Ораги А В А. Сапсосникса В В. Перспективы : на дизельэлектрических установок с персменной частигой вранения "/Судостраение.— 1976.—№ 10.—С. 28—29.
 - 2. Еременко В г. Солючи синхранити тенер. преобразнатель частоты -асинхронизиров, път синхроният тенеротор 'Электротехинка, 1966.—№ 6.—С. 37—39.
- Илкарям Ю. 1 Асидхрова прованные сипхрониле машина М.:Энергол гомиздат, 1981.—193 с.
- wer System (ICEM, -1281, -P III, -P, 1068-1072)
- 5 Лжюджи Л. Пелла В. Св. полупр тол якавые преобра ователи частоты.— М.: Эпергостомнадал, 1983—400 с.

Нав. All ApмCCP (сер. 7H), т. XII., № 1, 1988

ГИДРОТЕХНИКА

Р. М. БАРСЕГЯН, В. А. САГАТЕЛЯН

ЗАДАЧА ФИЛЬТРАЦИИ В ДЕФОРМИРУЕМЫХ ГРУНТАХ С УЧЕТОМ ИЗМЕНЕНИЯ СООТНОШЕПИЙ МЕЖДУ ФАЗАМИ ГРУНТА

Основные гравнения фильтрации в деформируемых водонасыщевных груптах с учетом изменения соотношений между жидкой и твердой фазами групта и процессе фильтрации даны в работе [1]. При выводе основных уравнений использовано уравнение равновесия для исстабилизированного состояния, которое позволяет учитывать изменение соотношений между фазими групта для любого момента времени

О дно и г уравнений, приведенных в [1], имеет вид

$$\left(1 + \frac{e_{cv}}{\bar{a}E}\right)\frac{\partial H}{\partial t} =$$

$$= \frac{(\tau - \tau)k}{\tau(1 + \sigma_{cv})}\frac{\partial H}{\partial z}\Big|_{z=0}^{z} - \frac{(1 + e_{cv})k}{\bar{a}}\frac{\sigma(H)}{\sigma z^{2}} - s'(t)\frac{\tau\epsilon_{cv} + \sigma_{cv}}{\tau(1 + \epsilon_{cv})}. \quad (i)$$

где H - H(z,t) — искомый напор; e_{zp} — осредненный коэффициент пористости групта; a - коэффициент уплотиения групта (групт не обладает структурной прочностью); E_u — модуль объемного сжатия волы: γ — объемный вес воды: γ — удельный вес скелета групта; k — коэффициент фильтрации. S(t) — осадка слоя групта в момент времени t.

Если движущуюся в порах грунта жидкость (воду) считать несжимасиой, то Е₂ = ∞ и для несильностинмаемых грунтов из (1) получим

$$\frac{\partial H}{\partial t} = \bar{a}_{\alpha} \frac{\partial H}{\partial z}^{\beta} = \alpha^{\alpha} \frac{\partial^{\alpha} H}{\partial z^{\alpha}}.$$
 (2)

где

$$\overline{a_0} = \frac{1}{7(1+e_{cp})} \cdot \quad a^* = \frac{1+e_{cp}}{1}.$$

В настоящей работе рассматривается задача неустановнащейся фильтровии несжимаемой воды в деформируемом водонасыщейном грунге мощности T. На верхнем основании грунта миновенно накладывается равномерно распределения нагрузка интенсивности q. Подошна флютбета (штампа, сооружения и т. д.) водонепроницаемая. Под рассматриваемым слоем залегается недеформируемый водонасыщейный грунг с напором H_1 = const. Начало координат поместим на подошне флютбета (на верхней границе слоя грунга), а положительное направление оси ог выберем вниз. Тогда вышеуказанная задача математически сформулируется так: требуется найти функцию H(z,t), удовлетворяющую уравнению

$$\frac{\partial H}{\partial t} = \frac{1}{a_a} \frac{\partial H}{\partial z} + a^a \frac{\partial^a H}{\partial z^a} \tag{3}$$

и следующим условиям:

$$\frac{\partial H}{\partial z}\Big|_{z=0} = 0, \quad H_{z=0} = H_1; \quad H(z, \cdot) = \frac{q}{z} = H_0.$$
 (4)

При переходе из (2) к уравнению (3) было учтено, что верхняя граница слоя грунта (плоскость z=0) является водонепроницаемой.

С помощью замены искомой функции

$$H(z,t) = h(z,t)c$$

где $a = a_0 / a^*$, задача (3) — (4) заменяется задачей (5) — (6):

$$\frac{\partial h}{\partial t} = a^* \left(\frac{\partial^2 h}{\partial z^2} - \frac{a^2}{4} h \right), \tag{5}$$

$$\left(\frac{\partial h}{\partial z} - \frac{a}{2}h\right)\Big|_{z=0} \qquad h = H_0 e^{-\frac{a}{2}t} \qquad h(z,0) = H_0 e^{-\frac{a}{2}t}. \tag{6}$$

Применим к задаче (5) — (6) преобразование Лапласа относительно переменной t Полагая, что

$$h(z,p) = -h(z,i) dt,$$

приходим к задаче (7) - (8):

$$a^{\pm} \frac{d^{2}h}{dz^{2}} - (a + p) h = -H_{0} e^{-2^{\pm}}. \tag{7}$$

$$\left(\frac{dh}{dz} - \frac{d}{2}\overline{h}\right) = 0; \quad h = \frac{H_1}{\rho} e^{\frac{-\tau}{2}T}. \tag{8}$$

где $a = \frac{1}{4} a^* a^*$.

Решения вадачи (7)—(8) найдено методом Лагранжа. Оно имеет вид:

$$\overline{h}(z,p) = \frac{H_0}{p} e^{\frac{a}{z}z} + \frac{H_1 - H_0}{p}$$

$$\times e^{\frac{a}{2}T} \frac{1}{a^s} \frac{\frac{a}{a^s} - \frac{p}{a^s} - \frac{1}{a^s} - \frac{a}{2} + \frac{p}{a^s} - \frac{1}{a^s}}{\frac{a}{a^s} - \frac{1}{a^s} - \frac{1}{a^s}$$

Переход от h(z,p) к искомой функции h(z,t) осуществим по формуле обращения Римана-Мелина, согласно которой

$$h(z,t) = \frac{1}{2\pi t} \int_{z-t_n}^{z+t_n} \overline{h}(z,p) e^{pt} dp.$$
 (10)

В (10) интегрирование производится по произвольной прямой с= const (ССО) парадлельной мнимой оси. Все особые точки подыше-гральной функции находятся с левой стороны пути интегрирования.

Особые точки подынтегральной функции-простые полюсы

$$\rho = 0$$
, $\rho_n = -x - a^* \mu_n^2 T^{-2}$ $(n = 1, 2, ..., 1)$

где p_n — кории уравнения

$$\sqrt{\frac{\alpha+p}{a}} T \operatorname{ch} \sqrt{\frac{\alpha+p}{a}} T + \frac{Ta}{2} \operatorname{sh} \sqrt{\frac{\alpha+p}{a}} T = 0,$$

а у — уравиения

$$tg \ \mu = -\frac{2\mu}{aT}, \tag{11}$$

следующего из предыдущего.

Все условия леммы Жордана выполнены, поэтому для вычисления интеграла в (10) достаточно найти сумму вычетов подынтегральной функции в вышеуказанных полюсах. После вычислений и некоторых преобразований из (10) получим

$$h(z, t) = H_1 e^{\frac{a}{z}} + 2u_0 T (H_1 - H_0) \times e^{\frac{a}{z}} \sum_{i=1}^{n} \frac{u_n R_n(z) \exp 1 - (\alpha - a^* u_n^* T^{-2}) t!}{(\alpha T^2 + a^* u_n^*)(4u_n^* + T^2 a^2 + 2Ta) \cos u_n}$$
(12)

где $R_a(z) = 2\mu_a \cos \frac{\pi}{T} + Ta \sin \frac{\pi}{T}$

Таким образом, окончательное решение поставленной задачи (3)— (4) дается формулой

$$H(z_{1}) + 2a_{0} T(H_{1} - H_{0}) \times$$

$$= (T-z) \frac{(2) \exp \left[-(\alpha + a^{2} \mu^{2} T^{-}) t\right]}{(\alpha T^{2} + a^{2} \mu^{2})(4\mu^{2} + T^{2} a^{2} + 2Ta) \cos u_{1}}$$
(13)

Кории μ_n характеристического уравнения (11) возрастают с возрастанием индекса $n=n=\dots$ причем для достаточно больших $N(\mathbf{u}_N)=0$ При достаточно больших Ta кории характеристического уравнения (11) мало отличаются от значений n=1, а для малых $Ta=\mathbf{u}_1=(2n-1)-1$. Кории можно найти графически. При необходимости обеспечения большой точности следует решить характеристическое уравнение числениыми методами с применением ЭВМ. Няже в таблице приведены первые семь корией уравнения (11) для достаточно общирных значений безразмерного выражения $\delta=\frac{2}{12}$

Представляет интерес рассмотрение одного из предельных случаев поставленной задачи, а именно— нахождение решения для малых значений времени. С этой целью представим решение (9) для изображения в виде

$$\overline{h}(z, p) = \frac{H_0 e^{\frac{a}{2}z}}{p} + \frac{(H_1 - H_0)}{p} \times e^{\frac{a}{2}T} \frac{\operatorname{ch} \sqrt{\frac{\alpha + p}{a^*}} z \left(\sqrt{\frac{\alpha + p}{a^*}} + \frac{a}{2} \operatorname{th} \sqrt{\frac{\alpha + p}{a^*}} z\right)}{\operatorname{ch} \sqrt{\frac{\alpha + p}{a^*}} T \left(\sqrt{\frac{\alpha + p}{a^*}} + \frac{a}{2} \operatorname{th} \sqrt{\frac{\alpha + p}{a^*}} T\right)}$$

5	μ,	189	12-1	1A.	25	h	p ₂
0.1	2,8629	5,7606	8,7083	11.7027	14,7335	17,79 18	24,8672
0,2	2,6537	5,4543	8,3913	11,4086	14,4699	17,5502	20,6578
0,3	2.4934	5,2759	8,2385	11,2828	14,3652	17,4673	20,5809
0.4	2,3896	5,1633	8,1516	11,2149	14,3101	17,4213	20,5415
0.5	2,2889	5,057	8,0962	11,1727	14,2764	17,3932	20,5175
0,6	2,2157	5,0322	8,053	11,144	14,2536	17,3744	20,5015
0,7	2,156	4,9912	8,63	11,1233	14,2372	17,3509	20, 19
0,8	2,1064	4.9593	8.0058	11,1076	14.2248	17,3507	20,4813
0,9	2,0645	4,9339	7,9921	11,0954	14,2152	17,3427	20,4746
1	2,0288	4.9132	7,9787	11,0555	14.2074	17,3364	20,4692
1.5	1,9071	4,849	7 9378	11,0558	14,1841	17,3172	20,4529
2	1,8366	4,8158	7,917	11,0408	14,1728	17,3076	20,4448
2,5	1,7906	1,7930	7,9045	11,0318	14,1654	17,3019	20.44
3	1,7582	4,782	7+8962	11,0258	14,1607	17,298	20,4367
4	1,7155	4,7618	3957	11,0183	14,1545	17,2932	20,4326
5	1,6987	4,7511	7,8794	11,0137	14,1513	17,2903	20,4301
10	1,632	4,7335	7,8667	11,0047	14,1442	17,2846	20, 4253
15	1,6121	3,7265	7,8625	11,0016	14,1419	17,2826	20,4236
25	1,5959	4,7209	7,8591	10,9992	14.14	17.2811	20.4223
35	1,5888	4,7181	7,8576	10,9982	14, 1392	17,2804	20,4218
50	1,5834	4,7166	7,8565	10,9974	14 - 1386	17,2799	20,4213
30	1,5787	4,715	7,8556	10,9967	14,1381	17,2795	20,421
100	1,5771	4,7145	7,8533	10,9965	14,1379	17, 2793	20,4208

Для больших p функцию h(z,p) можно заменить выражением

$$\overline{h}(z, p) = \frac{H_0}{p} \exp\left(\frac{a}{2}z\right) + (H_1 - H_0) \exp\left(\frac{a}{2}T\right) \frac{\cosh\sqrt{\frac{a+p}{a^*}z}}{p \cosh\sqrt{\frac{a+p}{a^*}T}}.$$
 (14)

Переход от изображения (14) к оригиналу производится по формуле обращения Рямана-Мелина. Искомая функция напоров H(z,t) определяется формулой

$$H(z, t) = 1 - \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^n (2n-1) \cos \frac{(2n-1) \pi z}{2T}}{\pi^2 a^4 (2n-1)^2} \times \exp \left[-\frac{1}{4T^2} + \frac{1}{4T^2} + \frac{1}{4T^2} + \frac{1}{2} + \frac{1}{4T^2} + \frac{1}{2} + \frac{1}{$$

Так как освобождение воды происходит за счет уменьшения пор, то имеет место равенство для сечения z [2] в момент времени t

$$-k\int\limits_{0}^{\infty}\frac{\partial H}{\partial z}dt=s(z,t),$$

где под s(z,t) подразумевается осадка части слоя грунта до глубины z. Осадка же исего слоя грунта s(t) в момент времени t определяется формулой

$$s(t) = -k \int_{0}^{t} \frac{\partial H}{\partial z} \bigg|_{z=\overline{z}} dt. \tag{15}$$

Найдем выражение удельного расхода воды в сечении z=T для момента времени / по формуле (13):

$$k \frac{\partial H}{\partial z}\Big|_{z=T} = 2k \left(H_1 - H_0\right) a^* T^{-3} \sum_{n=1}^{\infty} \frac{\mu_n^* \exp\left(-\bar{\mu}_n I\right)}{\bar{\mu}_n + \frac{a_0}{2T}}$$

где

$$\overline{p}_n = \frac{(a_n T)^2 + (2a * p_n)^2}{4a * T^2} -$$

Согласно (15), осадку слоя грунта можно определить по формуле:

$$s(t) = 2k (H_0 - H_1) a^* T^{-1} \sum_{n=1}^{\infty} [1 - \exp(-\bar{\mu}_n t)] \mu_n^2 \bar{\mu}_n^{-1} \left(\bar{\mu}_n + \frac{a_0}{2T}\right)^{-1}$$

Конечная осадка слоя грунта s = lim s(t), поэтому

$$s_{a} 2k (H_{0} - H_{1}) a^{a} T^{-3} \sum_{i=1}^{n} a^{2} a^{-1} \left(1 + \frac{1}{2T}\right)^{-1}$$

Полученные результаты можно использовать при проектировании и строительстве гидротехинческих сооружений.

ЕрПИ им. К. Маркев

11 IV 1986

ո. Մ. ԲԱՐՄԵՂՑԱՆ, Վ. Ա. ՄԱՂԱԹԵԼՑԱՆ

ԾԵԱՆՑՄԱՆ ԽՆԴԻՐԸ ՍԵՂՄՎՈՂ ԲՆԱՀՈՂԵԲՈՒՄ ՆՐԱՆՑ ՓՈՒԼԵՐԻ ՄԻԶԵՎ ՀԱԲԱԲԵՐՅԱԿՑՈՒԹՅԱՆ ՓՈՓՈԽՄԱՆ ՀԱՇՎԱՌՄԱՄՐ

Տրված սեղմելի անագեցված բնանողերում ծծանցման մի եղթային խնդրի լուծում։ Ծծանցումը կատարվում է բնանողի շերտի եղբին հիրատված արտաբին բեռի ազդեցության տակ, այդ ընթացքում փոփոխվում է բնանողի Ճեղուկ և կարծը փուլերի փոխնարաբերությունը, որը նաշվի է առնված հյակետային հավասարման մեջ. Դանված է ծծանցման ընթացքում բնահողի շերտի նստվածքը ժամանակի ցանկացած պահին, որը մեծ նշանակություն ուհի սեղմելի ընահողերի վրա կառույցների նախագծման ժամանակ։

ЛИТЕРАТУРА

- 1. Биргесян Р. М. Основные уравневии фильтрации и деформируемых груптах //ДАЯ СССР, 1980—Т. 252, № 4.—С. 817—820.
- 2 Барсески Р Al Методы решения заяч теории фильтрации и неоднородных сред дох.—Превын 1152-80 ЕГУ, 1977 —303 с.

Has AH ApsiCCP (cep TH), v XLI, M. I. 1988.

НАУЧНЫЕ ЗАМЕТКИ

100

в м мирзоян, а а мирзоян

КИНЕМАТПЧЕСКИЙ АНАЛИЗ ПРИНЦИПИАЛЬНЫХ СХЕМ ОБРАБОТКИ НАРУЖНЫХ ПОВЕРХНОСТЕЙ ТЕЛ ВРАЩЕНИЯ

В последные годы существенное развитие получили принципиально новые методы обработки, основанные на сочетании двух элементарных движений, лежащих в одной плоскости [1]. Кинематические схемы резания этих методов включают два вращательных или вращательное и поступательное движения. В них при простоте получения требуемых движений заложены возможности многолезвийной обработки сложных поверхностей при автоматической смене режущих кромок и незначительных холостых ходов Кинематические исследования этих методов обработки достаточно полно выполнены в [2, 3].

На рис. 1 приведена схема обработки тела вращения, где для формообразования детали достаточно только два вращательных движения. Если в обобщениой схеме принять радиус инструмента за деременную величину, оставляя неизменными радиус заготовки г. и глубину резания г, то получим различные схемы обработки. Положение оси инструмента и точке O_1 соответствует тангенциальной обработке по схеме иненнего касания, когда центры вращения заготовки и инструмента, расположены по разные стороны от точки их касания К. Увеличивая радиус инструмента, получаем случай 11—11, принципнально не отличающимся от случая 1—1. Можно представить случай, когда радиус инструмента увеличивается до бесконечности.

Схемы обработки, приведенные на рис. 2, иненине различны Меняя величниц A, R и r_{\uparrow} , можно перейти от одной схемы к другой. Например, при $A < r_{\uparrow}$ имеем схему обработки внутренией поверхности, а при $r_{\uparrow} \sim -$ прямолинейной поверхности вращающим инструментом