Տեխնիկական գիտութ. սեբիա

XXXVIII, № 3, 1985

Серия технических наук

измерительная техника

В. Р. МАРТИРОСЯН

ВИНЕРОВСКАЯ ФИЛЬТРАЦИЯ ИЗОБРАЖЕНИЙ С УПРАВЛЯЕМОЙ РЕЗКОСТЬЮ

Процесс формирования изображения в некогерентной линейной изопланотической системе может быть описан уравнением свертки

$$f(x) = \int s(\xi) \cdot h(x - \xi) d\xi + n(x), \tag{1}$$

где f, s, n — интенсивности наблюдаемого изображения, объекта и шума соответственно, а h — функция рассеяния точки системы формирования. Задача оптимальной липейной фильтрации для уравнения (1) формулируется следующим образом [1]. Наблюдаемое изображение считается реализацией случайной функции f, полученной в результате применения пекоторого оператора L к случайному входному сигналу s, причем корреляционные функции соответствующих процессов известны. Требуется найти такую весовую функцию $h_{\rm B}$ линейного фильтра,

которая, воздействуя на f, формирует на выходе фильтра функцию g, имеющую наименьшее среднеквадратическое уклонение от некоторой желаемой функции g. Последняя считается образом сигнала s, получаемым из s с помощью воздействия идеального оператора L_{π} (рис. 1).

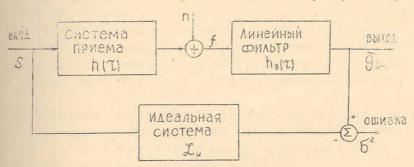


Рис. 1. Общая схема линейной фильтрации.

Минимизация функционала среднего квадрата ошибки в точке x

$$\sigma_g^2 = E[g(x) - g(x)]^2,$$
 (2)

где E — знак усреднения по ансамблю реализаций приводит к следующему выражению для передаточной функции оптимального фильтра:

$$H_b(\omega) = R_{gf}(\omega)/R_f(\omega). \tag{3}$$

Здесь H, R_{gf} , R_f — фурье-образы h, r_{gf} , r_f соответственно, где

$$r_f(\tau) = E[f(x+\tau) \cdot f(x)] \tag{4}$$

— автокорреляционная функция f, а

$$r_{\kappa f}(\tau) = E[g(x + \tau) \cdot f(x)] \tag{5}$$

— взаимная корреляционная функция процессов g и f.

В классическом случае восстановления сигналов в качестве желаемой функции g берется точное значение входного сигнала ($L_{\rm H}$ — повторитель или δ — функция) и на выходе должна быть получена оценка

самого сигнала s, т. е. g = s, g = s.

В этом случае

$$R_{f}(\omega) = R_{s}(\omega) |H(\omega)|^{2} + R_{n}(\omega), \tag{6}$$

$$R_{gf}(\omega) = R_{sf}(\omega) = R_s(\omega) \cdot H^*(\omega), \tag{7}$$

где R_s и R_n — спектральные плотности мощности сигнала и шума, являющиеся преобразованиями Фурье автокорреляционных функций сигнала и шума соответственно. Подставляя (6) и (7) в (3), получаем передаточную функцию фильтра Винера—Хелстрома:

$$H_{v_{\bullet}}(\omega) = \frac{H^{*}(\omega)}{|H(\omega)|^{2} + R_{n}(\omega)|R_{s}(\omega)}. \tag{8}$$

Фильтр (8) обеспечивает восстановление сигнала с минимальной среднеквадратической ошибкой и является оптимальным, однако критерий среднего квадрата является далеко не наилучшим с точки зрения визуального восприятия. При малых отношениях сигнал—шум восстановленное изображение выглядит чрезмерно сглаженным: «... человеческий глаз «охотно пошел бы» на некоторое усиление визуального шума ради возможности разглядеть дополнительные мелкие детали изображения» [2].

Ввиду вышензложенного был предпринят ряд попыток модификации критерия с целью снижения «засилья» низких частот в получаемой оценке: метод наименьших квадратов с ограничением [2], частотное взвешивание ошибки [3] и комбинированный критерий «среднеквадратическая ошибка—резкость» [4].

В последнем случае минимизируется выражение

$$\sigma_1^2 = E[s(x) - \tilde{s}(x)]^2 + \lambda \cdot E[\tilde{s}'(x)]^2, \tag{9}$$

где второй член является мерой общего содержания контурных градиентов в оценке s. Передаточная функция фильтра имеет вид [4]:

$$H_{b_1}(\omega) = H_{b_0}(\omega) \cdot \frac{1}{1 + \lambda \omega^2} \cdot \tag{10}$$

Таким образом, фильтр распадается на два последовательных: фильтры Винера—Хелстрома и управления резкостью. При $\lambda>0$ высокие частоты ослабляются и оценка сглаживается, а при $\lambda<0$ эти частоты усиливаются. Эксперименты, проведенные с различными λ , показали, что полезные результаты получаются в режиме сглаживания при $\lambda>0$ [4]. Это представляется вполне естественным, если рассмотреть график функции $1/(1+\lambda\omega^2)$ (рис. 2). При $\lambda<0$ фильтр совершенно "необоснованно" выделяет частоты, близкие к $\omega_0=1/\sqrt{|\lambda|}$, что приводит к чрезмерным шумам на этих частотах, если последние попадут в полосу обработки.

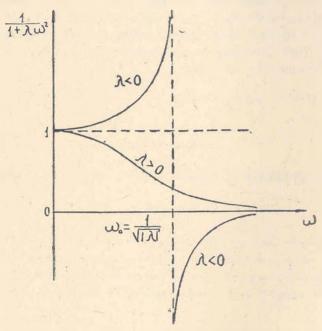


Рис. 2. Передаточная функция фильтра управления резкостью.

Предлагаемый подход основан на экспериментальном факте, что глаз лучше воспринимает слегка оконтуренное изображение [3]:

$$s_0(x) = s(x) - \gamma Ls(x), \tag{11}$$

где L — оператор Лапласа, или в одномерном случае — вторая производная; γ — небольшое положительное число. Будем искать наилучшую в среднеквадратическом смысле оценку оконтуренного изображения

$$s_0$$
, т. е. положим, что $g'(x) = s_0(x)$, $\tilde{g}'(x) = \tilde{s}_0(x)$.

Тогда, в соответствии с формулой (3) необходимо найти R_{sof} (ω). Подставляя в выражение для взаимной корреляционной функции

$$r_{sof}(\tau) = E\{[s(x+\tau) - \gamma s''(x+\tau)] \cdot f(x)\}$$
 (12)

значение f(x) из формулы (1), производя усреднения под знаком интеграла и применяя преобразование Фурье для обеих частей будем иметь

$$R_{s_{of}}(\omega) = H^{\#}(\omega) \cdot R_{s}(\omega) (1 + \gamma \omega^{2}). \tag{13}$$

Подставляя (6) и (13) в (3), получаем передаточную функцию фильтра

$$H_{b_n}(\omega) = H_{b_n}(\omega) (1 + \gamma \omega^2),$$
 (14)

управление резкостью которого осуществляется параметром γ , причем с ростом γ происходит подъем высоких частот, т. е. подчеркивание контурной информации в оценке входного изображения в соответствии с психофизическими свойствами зрения. Заметим, что добавка, вносимая фильтром (14), отличается от аналогичной, вносимой фильтром (10) при $\lambda = -\gamma < 0$ лишь на величину второго порядка малости по отношению к $\lambda \omega^2$; при этом передаточная функция фильтра (10) сохраняет непрерывность на всех частотах.

Ер. фил. ВНИИОФИ Госстандарта СССР

10. VII. 1984

Վ. Ռ. ՄԱՐՏԻՐՈՍՅԱՆ

ՊԱՏԿԵՐՆԵՐԻ ՀՍՏԱԿՈՒԹՅԱՆ ՂԵԿԱՎԱՐՈՒՄԸ ՎԻՆԵՐՅԱՆ ԶՏՄԱՆ ԴԵՊՔՈՒՄ

Udynyniai

«Աղմուկների» առկայության դեպքում աղավաղված պատկերների վերականգնման Համար առաջարկվում է վիներյան զաիչի պարդ տարբերակ, որը թեույլ է տալիս ստանալ բարձր Հաճախականություններով ավելի Հարուստ տեսողության Հոգեֆիզիկական Հատկություններին Համապատասիանող գնաՀատականներ։

ЛИТЕРАТУРА

- 1. Василенко Г. И. Теорня восстановления сигналов.— М.: Сов. радио, 1979.— 269 с.
- 2. Andrews H. C., Hunt B. R. Digital image restoration. New Jersey, Englewood Cliffs: Prentice-Hall, 1 nc., 1977. 232p.
- 3. *Стокхем Т. Г.* Обработка изображений в контексте модели зрения.— ТИИЭР, тем. вып., 1973, с 3—29.
- 4. Фриден Б. Улучшение и реставрация изображений.— В ки.: Обработка изображений и цифровая фильтрация /под ред. Хуанга.— М.: Мир, 1979, с. 193—270.