20340446 002 955056305666 ЦЛОЛЬ ССР ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Յեխհիկական զիտութ․ սև**բիա**

XXXVII, № 5, 1984

Серия технических наук

СТРОИТЕЛЬНАЯ МЕХАНИКА

В. В. ПИНАДЖЯП, А. В. ДАНДУРОВА

К РАСЧЕТНОЙ ОЦЕНКЕ НЕСУЩЕП СПОСОБНОСТИ СЖАТЫХ ЖЕЛЕЗОБЕТОННЫХ КОЛОНН

1. Анализ результатов испытания железобетонных колони различной чискости на сжатие показывает, что исчерпание их несущей способности в зависимости от соотношения геометрических параметров колони, величины экспентриситета приложения продольной напрузки и прочностных характеристик бетона и арматуры наступает вследствие дробления бетона в сжатой зоне сечения, возникновения в растяпутой арматуре значительных деформаций или вследствие потери устойчивости равновесия.

Ниже приводится приближенное решение задачи для случая, когда

прямолннейная колонна прямоугольного сечения высотой h и ширяной b, с шарянрно закрепленными концами, сжата силами, приложенными с одинаковым экспентриситетом е. Допускается, что связь между напряжениями и деформациями бетона в сжатой зоне и арматуры в растянутой зоне описывается днаграммой Прандтля (рис. 1); при деформированном состоянии колонны сохраняется гипотеза плоских сечений и се осъ описывается уравнением синусонды; работа арматуры в сжатой зоне сечения не учитывается; пло-

Рис. 1. Идеализированиая дивграмма т-з при сжатии бетона и растяжении врматуры

ская форма изгиба устойчива; раднус инерции железобетонного се-

$$r_{n} = \sqrt{\frac{J_{n}}{F_{n}}} = h \sqrt{\frac{1+6n\mu}{12(1+n\mu)}} = h9, \qquad (1.1)$$

$$\mu = \frac{F_{n}}{bh}; \qquad \mu = \frac{E_{n}}{E_{0}}.$$

Fac

21

На основании принятых допущений кривизна оси колонны в серелине ес высоты (опасное сечение) может быть представлена в следующем виде.

$$\frac{1}{p} = (y)^{*} = -\frac{e^{2}f}{l^{2}} = -\frac{e_{0}}{c} = -\frac{R_{0}}{E_{0}c}.$$
 (1.2)

В силу (1, 2) находим выражение, по которому при одном из возможных напряженных состояний опасного сечения (рис. 2) определяется несущая способность колонны.

$$\lambda^2 = -\frac{\pi^2 \, 6^2 E_\delta}{R_{\rm np}} \, \overline{c} \, \overline{f}. \tag{1.3}$$

Рис. 2. Напряженные состояния внецентренно-сжатого железобетовного элемента прямоугольного сечения: а) 1; б) 11; в) 111.

В формулах (1.1) – (1.3): l — расчетная длина колонны; $k = l j r_{\rm o}$ — гибкость колонны в плоскости изгиба; у — прогиб оси колонны в середине пролета, отсчитанный от линии действия продольных сил; f, f = f/h и c, c = c/h — соответственно, абсолютиая и относительная величниа стрелы прогиба колоним и нысоты упругого ядра в сжатой части сечения, отсчитанные от нейтральной оси; F_a — площадь сечения растянутой арматуры; р – коэффициент армирования сечения; E_b – иачальный модуль упругости бетона; L — модуль упругости арматуры.

2. Для напряженного состояния / (рис. 2а) в соответствии с рис. 1

$$\frac{R_{\rm op}}{z_{\rm A}} = \frac{z_{\rm p}}{z_{\rm A}} = \frac{c}{c+c+h} + \frac{c}{c+h}$$

откуда

$$\sigma_x = R_{ap} \frac{c + c - k}{c} \cdot \tag{2.1}$$

Обозначая через К отношение $\frac{e^6}{r_n} = \frac{c+c}{c}$ находим

$$c = \frac{c}{K-1} \cdot \tag{2.2}$$

Условия равновесия между внешними и внутренними усплиями, согласно рис. 2a:

$$P = R_{\rm up} b c_1 + \frac{R_{\rm up} + \sigma_1}{2} b (h - c_1); \qquad (2.3)$$

$$M + \frac{Ph}{2} - \frac{R_{\rm up} bh^2}{2} + \frac{(R_{\rm up} - \sigma_x) (h - c_1)^2 b}{6} = 0.$$
(2.4)

Обозначая через $\varphi = \frac{P}{R_{hp} \, \delta h}$, из (2.3) получим выражение для относительной высоты пластической зоны в сжатой части сечения:

$$c_1 = \frac{K-\gamma}{K-1} - \sqrt{\left(\frac{K-\gamma}{K-1}\right)^2 - 1}.$$
 (2.5)

Ная в виду, что

$$M = Py \Rightarrow \varphi R_{\rm up} bh (f + e),$$

а относительный: эксцентриситет приложения продольной силы: m = = бе/h. на основании (2.4) после преобразований получим:

$$\overline{f} = \frac{1}{2\varphi} \left[1 - \frac{(K-1)(1-\overline{c_1})^3}{3\overline{c_1}} - \frac{m_{\overline{\gamma}}}{3} - \varphi \right].$$
(2.6)

а пз (1.3) в силу (2.2) -

$$\bar{\lambda}^{2} = \frac{\pi^{2} \delta^{2} E_{6}}{R_{sp} (K-1)} \bar{f} \bar{c}_{3}.$$
(2.7)

3. Для напряженного состояния II в соответствии с рис. 1 и рис. 26: — = с. поэтому напряжения в растянутой арматуре:

$$\mathbf{z}_{u} = nR_{np} \, \frac{c_{2}}{c} \, \cdot \tag{3.1}$$

Условия равновесия между внешчими и внутрепними усилиями согласно рис. 26:

$$P = R_{\rm up} bc_1 + \frac{R_{\rm up} bc}{2} - nR_{\rm up} \frac{c_*}{c} F_*; \qquad (3.2)$$

$$M + \frac{Ph}{2} - R_{np} c_1 b \left(h - \frac{c_1}{2} \right) - \frac{R_{np} cb}{2} \left(h - c_1 - \frac{1}{3} c \right) = 0, \quad (3.3)$$

Из выражения (3,2) с учетом (2,2) после преобразований получим:

$$\overline{c}_{1} = -\frac{(K-1)(Kn\mu - \varphi)}{1 + 2(K-1)} + \frac{Kn\mu - \varphi}{1 + 2(K-1)} + \frac{2n\varphi}{1 + 2(K-1)} \cdot (3.4)$$

 $\mathbf{23}$

а из (3. 3)-

$$\vec{I} = \frac{1}{2\varphi} \left\{ \frac{\vec{c}_1}{K-1} \left[1 - \vec{c}_1 - \frac{\vec{c}_1}{3(K-1)} \right] + 1 - (1 - \vec{c}_1)^2 - \frac{mp}{3} - \varphi \right\}.$$
(3.5)

4. В случае, когда напряжения в растянутой арматуре достнгают пределя текучести, усилие в ней будет равно о, F₁ (рис. 2в). Для рассматриваемого случая осевая сила равна:

$$P = R_{\rm up} bc_1 + \frac{R_{\rm up} bc}{2} - \epsilon_{\rm r} F_{\rm r}. \tag{4.1}$$

Из (4.1) с учетом (2.2) носле преобразования получим:

$$\overline{c_1} = \frac{(K-1)\left(\varphi + \mu \frac{\pi}{K}\right)}{K - 0.5} .$$
(4.2)

Для рассматриваемого случая значения М и f определяются уравнениями (3.3) и (3.5).

5. Граница между областями напряженных состояния 1 и II определяется из условия ε₁ = 0 или

$$c + c_1 = h. \tag{5.1}$$

На основания гипотезы плоских сечений:

$$\frac{\varepsilon_{up}^0}{\varepsilon_u^0} = \frac{c+c_1}{c} = K,$$

откуда с учетом (5.1):

 $\overline{c_1} = \frac{\mathcal{K} - 1}{\mathcal{K}} \cdot \tag{5.2}$

Исходя из условия равновесия между внешними и внутренними силами, получим:

$$P = R_{ny}bc_1 + \frac{R_mbc}{2}, \qquad (53)$$

откуда с учетом (5.1);

$$\overline{c_1} = 2\varphi - 1. \tag{5.4}$$

На основания (5.2) и (5.4) определяем выражение траничной линия между областями напряженных состояний, представленных на рис. Та и рис. 26:

$$\varphi_{r-n} = \frac{K - 0.5}{K}$$
 (5.5)

24

6. Гранину между областями напряженных состояний И и И1 грис. 26 и рис. 2в) находим из условия e = e B рассматриваемом случае:

$$\frac{e_{np}^{6}}{e_{n}^{6}} = \frac{c + c_{1}}{c} = K, \quad \text{откуда} \quad c_{1} = (K - 1)c; \quad (6.1)$$

$$\frac{c_2}{a} = \frac{c_2}{c} = a_a, \qquad \text{OTRYAS} \quad c_2 = a_a c, \qquad (6.2)$$

rae

$$c_1 + c + c_2 = h. (6.3)$$

Из приведенных выражений получим:

$$\bar{c} = \frac{1}{K + \alpha_s}$$
 (6.4)

При совместном решении (3.2), (6.1), (6.2), (6.4) после преобразований находим выражение, описывающее границу между областями напряженных состояний 11 и 111;

$$\varphi_{11-111} = \frac{K - 0.5}{K + \alpha_a} - n\mu\alpha_a \,. \tag{6.5}$$

Рис. З. Значения == (1, m) для писцентрению-сжатых железобетонных колови прямоугольного сечения, вычисленные по предлагаемой методике. Штриховые лиции ноказывают границы областей характерных напряженных состояний.

7. Нижнюю границу напряженного состояния III получим из условия : _ В рассматриваемом случае:

> $\frac{\varepsilon_{a}}{\varepsilon_{a}^{0}} = \frac{c_{2}}{c} = K,$ $c_{2} = Kc_{2}$

25

(7.1)

На основании (4.1), (0.1), (6.3), (7.1) находим выражение, описываюшее нижнюю границу папряженного состояния, представленного на рис. 28:

$$\varphi_{\rm HI} = \frac{K - 0.5}{2K} = \mu \frac{\sigma_{\tau}}{R_{\rm hp}} \,. \tag{7.2}$$

8. Численные значения коэффициента φ внецентренно-сжатых железобетонных колонн в зависимости от *m* и λ при заданных расчетных параметрах (R_{np} , *n*, *p*, *K*, σ_r) реализованы по предложенному методу па ЭВМ "Наири-2".

Для иллюстрации на рис. З представлены кривые зависимостя $\varphi = \varphi$ (*i*, *m*) для случая, когда $R_{\bullet} = 64$ *МПа*, n = 6, $E_{\bullet} = 3.3 \cdot 10^4$ *МПа*, $\mu = 0.03$, K = 1.03, $\sigma_1 = 240$ *МПа*.

Таблица

№№ колони	m	R _{ep} . MIIa	'n	≠ _γ , МПа	75	Ϋ́т	
K11-1	0,86	35,5	0,01	324	0,83	0,67	0, 81
KH-2	0.86	35,5	0,01	324	0,82	0.66	0.80
KUI-I	0,86	36	0,004	422	0,71	0,66	0,93
KH1-2	0,85	36	0,004	433	0,75	0,66	0,88
KIV-1	1.7	26	0,01	329	0,50	0,49	0,98
KIV-2	1,71	26,8	0,01	326	0,51	0,49	0,96
KV-I	1,73	29,2	0,003	427	0.47	0.44	0,94
KV-2	1,73	30	0,003	433	0.44	0.43	0,95
KV1-1	1,71	29,5	0,01	330	0,66	0,48	0,73
KVI-2	1.75	30	0,01	328	0,65	0,47	0,72
KVH-I	2.59	38,4	0,01	324	0,35	0,34	0,97
KVII-2	2,6	39,9	0,01	332	0,35	0,34	0,97
KIX-1	3,45	35,4	0,01	-324	0,28	0.27	0,96
K1X-2	3,46	35,1	0,01	324	0,3	0,28	0,93
KX-1	5,83	34,5	0.01	326	0,15	0,13	0,87
КХ-2	5,88	34,5	0,01	330	0,15	0,13	0,87
KXII-1	5,88	34,5	0,007	432	0,12	0,13	1,08
KX11-2	5,83	34,5	0,007	432	0,12	0,13	1,08
KXIII-1	3,46	28,2	0,003	443	0,19	0,19	1
KX411-2	3,47	29,1	0.003	429	0,17	0,18	1,06
KXVI-I	5,88	29,1	0.003	432	0,08	0.07	0,58
X X V I-2	5,83	30,6	0,003	422	0,07	0,07	I
KVIII-1	2,58	35	0,003	424	0,26	0,27	1,04
KVIII-2	2,6	37	0.003	424	0,26	0.27	1,04
KX1-1	3,41	33	0,007	432	0,25	0.27	1.08
KX1-2	3.41	35	0,007	438	0,23	0,26	1,13

Сопоставление расчетных и экспериментальных величин э для внецентренно-сжатых железобетонных колони при Ph=5,4

26

В пряведенной таблице численные значения р., вычисленные по предлагаемым формулам, сопоставлены с соответствующими экспериче, гальными значениями ф., полученными в НИНЖБ для железобеточных колони при различных относительных эжспентриситетах прилоксния продольной силы [1].

Тавличные данные свидетельствуют об удовлетворительной сходимости расчетных и экспериментяльных значений у.

Рис. 4. Криные состояния равновесия внецентренно-сжатых железобстояных колови при: 1 — m = 2; 2 — m = 1.

Анализ полученных результатов показывает, что для колони малчй и средней гибкости исчернание песущей способности наступает вследствие разрушения бетона в сжатой зоне или возникновения в растянутой арматуре напряжений, равных или превышающих предел телучести. Потеря устойчивости колониы, обусловлениая нарушением равновесия между внутренними и висшиними силами. может имсть често при больших значениях λ. В этом случае задача сволится к определению экстремяльного значения функции (1.3) в зависимости от б, (рис. 4).

ЕлПИ им. К. Маркса

18 VII. 1984

վ, վ, ՓԻՆԱՋՅԱՆ, Ա, վ, ԳԱՆԳՈՒՐՈՎԱ

ՍԵՂՐԻԼԱԾ ԵՐԿԱԹԲԵՏՈՆԵ ՍՅԱՆ ԿՐՈՂՈՒՆԱԿՈՒԹՅԱՆ ՀԱՇՎԱՔԿԱՅԻՆ ԳՆԱՀԱՏՄԱՆ ՎԵՐԱՔԵՐՅԱԼ

մալկավան արտակենտրոն սեղելու երկաքերետոնե և կրողունակություն ծաղություն առանան ուսելով դանկան հանություն հանություն հանություն Տկունությունը, որի Համար սաՀմանային բեռը սյան վրա կարող է բերել սեղմ ված գոտում բետոնի բայքայմանը, ձգված ամբանում հոսունության սահմանի և երկրորդ սեռի կայունության կորուստի։

ЛИТЕРАТУРА

 Чистяков Е. Л., Мамедов С. С. Деформации висцентренно сжатых железобетояных элементов в стадии, близкой к розрушению. —В сб.: НИНЖБ «Теория желеюбтона», посвящ 75-летию со дия рожд. проф. А. А. Гвоздева, М. Стройиздат, 1972. с. 116—123.