ՀԱՅԿԱԿԱՆ ԱՍՀ ԴԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԳԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОВ ССР

նինիկական զիտութ սեշիա

XXXIII, № 5, 1980 Серия технических наук

ИЗМЕРИТЕЛЬНАЯ ТЕХНИКА

Ο Η ΓΑCΠΑΡЯΡΕ Γ Ε ΕΓΠΑΒΑΡЯΙΕ

К ТЕОРИН ОДНООСНЫХ СИСТЕМ ОФСЕТНОГО ГИДИРОВАНИЯ АСТРОНОМИЧЕСКИХ ТЕЛЕСКОНОВ

1. Постановка задачи

В последние годы наблюдается тепленния к разработке астрономических телесконов больших размеров [1]. Одним из нанболее перспективных методов стабилизации гаких телескопов является метод внеосебого или, так называемого, офестного гидирования [1, 2]. В системах офсетного гидирования в качестве опорных (гидиочемых) выбираются достаточно яркие звезды, лежащие в предслах поля зрения телескопа, на его периферийных участках. Центральная область фокальной новерхности телескона при этом используется для проведения научных исследований.

Принцип офсетного гидирования нашел широкое применение з наземной астрономии [3]. Его использование обусловлено, в пераую очередь, все возрастающими требованиями к гочности гидирования астропомнческих телескопов. Это объясняется тем, что точность любой системы гидирования по существу ограничена соответствующими характеристяками используемых астродатчиков и наиболее радикальным путем повышения их точности является увеличением фокусного разстояния и относительного отверстия его оптической системы. Проведенный рядом авторов апалаз показал, что при современных требованнях к точности. которая должна достигать сотых и даже тысячных долей угловой секунды, размеры астролатчиков становятся сравнимыми, а иногда и превосходят эля целей гидпрозания оптику астрономических телесконов, т. е. к принципу офсетного гидирования.

Метод офестного гидирования был, в частности, применен в системе слежения стратосферной обсерватории «Стратоской П» в 1968 г. [5]. Этот метод используется также в системе стабилизации Большого Космического телескопа LST, разрабатываемого в США [6, 7]. К настояшему времени имеется много статей, посвященных описанию конструкции систем офестного гидирования наземных и внеатмосферных телескопов [2, 5, 6]. Вместе с тем, в литературе практически не освещены вопросы структурного и динамического синтела таких систем.

10

В предлагаемой статье рассмотрены основные принципы построения и синтезь одноосных систем офсетного гидирования по одной и двум опорным звездам.

2. Гидирование по одной опорной звезде

Основные элементы одноосных систем офестного гидирования по одной опорной звезде показаны на рис. 1, где 1 главное зеркало телескопа: 2 — вторичное зеркало; 3 фокальная поверхность (илоскость); 4 — двухкоординатный астролатчик; 5 блок научных приборов; 6 исследуемая звезда; 7 — опорная звезда; 8 — кольцевая (периферийная) зона возможного расположения опорной звезды; X, Y — оси стабилизации; Z — оптическая ось телескопа.

Рис. 1.

Изображение опорной звезды .1 находится в фокальной илоскости на расстоянии F tg b от оптической оси (точка O) под углом α к оси Y (рис. 2a), где F — эквивалентное фокусное расстояние телескова, а θ — угол между исследуемой и опорной звездами.

Наведение астродатчика на изображение выбранной опорной звезды осуществляется его неремещениями в фокальной илоскости при помощи специального механизма. Можно выделить две основные кинематические схемы установки астродатчика, приводящие к двум различным способам наведения.

Первая из инх обеспечивает плоско-параллельное движение астродатчика вдоль осей стабилизации X и Y.

Для определенности исходное положение астродатчика примем на оптической оси. Тогда, первый способ наведения состоит в перемещении астродатчика влоль осей X и F на требуемые величины уставок $\Delta_x = F \lg \theta \sin \alpha$ и $= -F \lg \theta \cos \alpha$ (рис. 2а). Очевидно, что оси чувствительности астродатчика X_{α} и Y_{α} при этом всегда параллельны соотнетствующим осям X и Y. Анализ рис. 2а показывает, что линейные отклонения X_{a2} и Y_{a2} опорной звезды в поле зрения астродатчика связаны с угловыми отклопениями телескопа z_x , z_y и z_z относительно осей стабилизации и оптической оси следующими выражениями:

 $X_{a2} = F \left[\cos \varepsilon_z \operatorname{tg} \varepsilon_y + \sin \varepsilon_z \operatorname{tg} \varepsilon_x - \operatorname{tg} \theta \sin z \left(1 - \cos \varepsilon_z \right) + \operatorname{tg} \theta \cos z \sin \varepsilon_z \right];$ (1)

$$Y_{a2} = F \left[-\sin \varepsilon_z tg \varepsilon_y + \cos \varepsilon_z tg \right]_{a2} - tg \theta \sin z \sin \varepsilon_z - tg \theta \sin$$

 $= tg \theta \cos z (1 - \cos z_r)].$

Рис. 2а, 6.

Пренебрегая в (1) членами вгорого порядка относительно а, для выходных сигиалов астродатчика U_y и U_y получаем:

$$U_{y} = W_{A}(p) X_{a2} = W_{A}(p) F(\varepsilon_{y} + \lg \theta \cos \alpha \cdot \varepsilon_{z});$$

$$U_{x} = W_{A}(p) Y_{a2} = W_{A}(p) F(\varepsilon_{x} - \lg \theta \sin \alpha \cdot \varepsilon_{z}).$$
(2)

где W₁ (p) — передаточная функция астродатчика.

На рис. 26 приведена структурная схема одноосной системы офсетного гидрирования, построенная с учетом выражений (2), где W'(p) передаточные функции сепаратных каналов стабилизации, куда отнесены и $W_A(p)$; $\varepsilon(p) = [\varepsilon_x, \varepsilon_x]^T$, $f(p) = [f_x, f_y, f_z]^1$, $\varphi_{\text{вы:}}(p) = [\cdots, \varphi_{\text{ных}_y}, \varphi_{\text{пих}_z}]^1$ векторы ошибок, возмущений и выходов системы (T — символ транспонирования).

Как видно из структурной схемы, неуправляемое движение телескова $s_2(t) = -f_1(t)$ вокруг его оптической оси является внешним возмущением для каналов стабилизации.

Вектор установнышейся ошноки системы на рис. 26 может быть найден на основании теории систем многосвязного регулирования [8], [9]:

$$\bar{\epsilon}(t) = -\sum_{t=0}^{\infty} C_t \frac{d^t}{dt^t} \left\{ \bar{f}_{\epsilon}(t) + \operatorname{tg} \emptyset \left[\begin{array}{c} -\sin \alpha \\ \cos \alpha \end{array} \right] f_{\epsilon}(t) \right\} + \operatorname{tg} \emptyset \left[\begin{array}{c} -\sin \alpha \\ \cos \alpha \end{array} \right] f_{\epsilon}(t).$$
(3)

где C_t — матрицы коэффициентов онибок; $f_1(t) = |f_x, f_z|^t$ — вектор возмущений, действующих по осям стабилизации.

При условия, что сенаратные каналы стабилизация имеют первый порядок астатизма ($C_0 = 0, C_1 = (1 F L_1)$), а возмущения представляют собой линейные функции времени $f_1(t) = v_x t$, $f_1(t) = v_y t$, = выражение (3) примет вид

$$\overline{\varepsilon}(t) = -\frac{1}{FK_{\rm p}} \left\{ \begin{bmatrix} v_x \\ v_y \end{bmatrix} + \operatorname{tg} \theta \begin{bmatrix} -\sin\alpha \\ \cos z \end{bmatrix} v_z \right\} + \operatorname{tg} \theta \begin{bmatrix} -\sin\alpha \\ \cos z \end{bmatrix} v_z t, \quad (4)$$

где Ке — добротности по скорости сепаратных каналов.

Из выражения (4) вытекает, что система на рис. 26 является астатической к возмущениям $f_r(t)$ и $f_y(t)$ и статической — к $f_z(t)$, причем статическая ошибка не зависит от выбора передаточных функций W (p) и определяется только расположением опорной звезды, т. е. углами 0 и α .

Переходя в (4) к модулям, получим следующую оценку для |e(t)|:

$$\left|\overline{e}(t)\right| \leqslant \frac{1 |v^2 + v^2|}{F_{N_v}} + \operatorname{tg} \mathfrak{b} |v_2| \left| \frac{1}{F_{N_v}} + t \right|, \tag{5}$$

которая, может быть использована для выбора добротностей A_v отдельных каналов, исходя из требуемой точности.

Поскольку сепаратные каналы системы на рис. 26 не связаны межлу собой, то анализ устойчивости системы сводится к анализу ее каналов обычными методами.

Вторая возможная кинематическая схема установки и наведения астродатчика обеспечивает его поворот вокруг оптической оси телескопа на угол α с последующим перемещением в радиальном направлении на величину $\Delta = F \log \theta$ (рис. 3a). Ось чувствительности Y_* при этом всегда направлена раднально к оптической осн. а яыходные снгналы астродатчика, после пренебрежения членами второго порядка, даются выражениями

$$U_y = W_x(p) X_{a_1} = r W_x(p) (-\sin z \cdot z_s + \cos z \cdot \cdot + \operatorname{tg} \theta \cdot z_s),$$

$$U_s = W_x(p) Y_{a_1} = r W_x(p) (\cos z \cdot z_s + \sin z \cdot z_s).$$
(6)

Структурная схема одноосной системы гидирования при втором способе наведения изображена на рис. Зб, откуда видно, что между сепаратными каналами имеются жесткие взаимные связи, обусловленные непараллельностью осей чувствительности астродатчика и стабилизации.

Рис. За. б.

При принятых выше условнях вектор установнышейся ошибки системы на рис. Зб запишется в виде

$$\overline{v}(t) = -\frac{1}{FK_v} R^{-1} \left\{ \begin{bmatrix} v_x \\ v_y \end{bmatrix} + \operatorname{tg} b \begin{bmatrix} -\sin \alpha \\ \cos \alpha \end{bmatrix} v_x \right\} + \operatorname{tg} b \begin{bmatrix} -\sin \alpha \\ \cos \alpha \end{bmatrix} v_x t, \quad (7)$$

$$R = \begin{bmatrix} \cos z & \sin z \\ -\sin z & \cos z \end{bmatrix}$$
(8)

является ортогональной матрицей (R⁻¹ = R') взанмных связея.

Переходя в (7) к модулям и учитывая, что спектральная норми матрицы R² равна единице, получим выражение, совпадающее с (5). т. е. с точки эрения точности системы гидирования оба способа наведения астродатчика на опорную звезду эквивалентны.

На основании известного метода декомпозиции [8] анализ усто и чивости этой системы со связанными каналами сводится к исследованию двух изолированных односиязных систем с передаточными функциями в разомкнутом состояния $\lambda_i W(p)$ (i = 1, 2), где $\lambda_{1,2} =$ $= \exp \{\pm ja\} - \operatorname{cobernehrme}$ значения матрицы R (8). Так как $\exp\{\pm/\alpha\}=1$, arg $\exp\{\pm/\alpha\}=\pm \alpha$, при анализе устойчивости с помощью логарифмических частотных характеристик необходимо сместнів фазочастотную характеристику сенаратного канала исходной системы на ± а, оставия змалитудно-частотную характеристику без измелений (рис. 4). Очевидно, критическая воличина угла а, при которой система на рис. Зб окажется на границе устойчивости, равна запасу устойчивости по фазе у сепаратного канала. На практике допустимая величина угла обычно не превышает 30-40 град. Следовательно, с точки зрения устойчивости, первый способ наведения астродатчика предпочтительнее, т. к. не накладывает ограничений на выбор опорной звезды.

3. Гидирование по двум опорным звездам

В одноосных системах офестного гилирования по двум опорным звездам можно обеспечить инвариантность к возмущению $f_s(t)$, т. е. цолностью исключить статическую оннобку, вызванную неуправляемым

rae.

движением вокруг оптической оси телескова. Инвариантность может быть достигнута двумя разными способами структурным я книематическим.

Структурный способ базируется на известном принцине заухканальности, сформулированном акал. Б. Н. Петровым и заключается в создании компенсирующих каналов распространения возм. щения $f_s(t)$, путем соответствующей полачи в каналы стабилизании сигналов с выхода дополнительного однокоординатного астродатчика, установленного в фокальной плоскости телескопа и совмещенного с изображением яторон опорной звезды.

Puc. 5a, 6.

На рис. 5а показана кольцевая зона фокальной плоскости с лнумя опорными звездами A и Б, расположенными под углами 0, и 0, к исслелусмой звезде О. На звезду A, как и ранее, наводится лвухкоординатный астродатчик $\mathcal{A}A$ с осями чуюствительности X_a и Y_a , сигналы с которого используются для идирования телескопа относительно осей X и Y, а на ивезду B — однокоординатный астродатчик $\mathcal{A}B$ с осью чувстинтельности X₆. Наведение астродатчиков произволится плоско-параллельными перемещениями вдоль осей X и Y, при которых оси чувствительности всегда параллельны соответствующим осям стабилизаник Подобное расположение приволит к следующим выражевиям для выходных сигналов U₁, U₂, астродатчика ДА в U₂, астродатчика ДБ:

$$U_{x_{2}} = F W_{z_{0}}(p) (\varepsilon_{x} - \lg \theta_{1} \sin \sigma_{1} \cdot \varepsilon_{z});$$

$$U_{y_{0}} = F W_{z_{0}}(p) (\varepsilon_{y} + \lg \theta_{1} \cos \sigma_{1} \cdot \varepsilon_{z});$$

$$U_{y_{0}} = F W_{z_{0}}(p) (\varepsilon_{y} + \lg \theta_{2} \cos \sigma_{2} \cdot \varepsilon_{z}),$$
(9)

где $W_{33}(p)$ и $W_{16}(p)$ – передаточные функции астр датчиков.

Измерительная часть системы гидирования телескопа, построенная по (9), приведена на рис. 56 и описывается матрицен

$$R = \begin{bmatrix} 1 & 0 & -\operatorname{tg} \theta_1 \sin \alpha_1 \\ 0 & 1 & \operatorname{tg} \theta_1 \cos \alpha_1 \\ 0 & 1 & \operatorname{tg} \theta_2 \cos \alpha_2 \end{bmatrix}$$
(10)

Из выражений (9) видно, что в сигнале U_{x_0} кроме требуемой информации о нозмущении $f_{z_0} = \varepsilon_t(t)$ содержится также информация об отклонении $\varepsilon_y(t)$. При условии идентичности перадаточных функций астродатчиков, т. е. при $W_{x_0}(p) = W_{x_0}(p) = W_{z_0}(p)$ иенужную состявляющую можно исключить, если из сигнала U_{y_0} вычесть $U_{z_0}(p)$ с. 56). В результате получим разностный сигнал U_{z_0} равной

$$U_{\varepsilon} = U_{y_0} - U_{y_1} = -FW_x(p) \det Rf_{\varepsilon} = FW_z(p) \det R \cdot \varepsilon_{\varepsilon}, \quad (11)$$

где

$$\det R = \operatorname{tg} \theta_2 \cos \theta_2 - \operatorname{tg} \theta_1 \cos \theta_1 \tag{12}$$

- определитель матрины R.

Измерительная часть системы на рис. 56 при этом характеризуется матрицей R, имеющей треугольную форму:

$$R = \begin{bmatrix} 1 & 0 & -\operatorname{tg} \theta_1 \sin \alpha_1 \\ 0 & 1 & \operatorname{tg} \theta_1 \cos \alpha_1 \\ 0 & 0 & \det R \end{bmatrix}$$
(13)

Матрина R_1 получается на $R_1(10)$ заменой третьей строки разностью третьей я второй строк, причем, определители обеих матрии равны друг другу (del R_1 del R_1) и отображаются теометрически отрезком на оси Y, равным разности ординат опорных звезд (рис. 5а). На онс. 6 приведена структурная схема системы офестного гидирования по цим опорным звездам, в которой, в соответствии с прининном цвухканальности, разностный сигиал U_1 подай, для компенсации возмущения $f_1(p)$, в каналы системы через коэффиниенты K_1 и K_2 . Здесь W(p)передаточные функции сепаратных каналов с учетом F и $W_3(p)$. Из рис. 6 для сигналов Ux и Uy можно записать:

$$U_{y} = \varepsilon_{y} - \operatorname{tg} \theta_{1} \sin \alpha_{1} \cdot \varepsilon_{z} + K_{13} \det R \cdot \varepsilon_{z};$$

$$U_{y} = \varepsilon_{y} + \operatorname{tg} \theta_{1} \cos \alpha_{1} \cdot \varepsilon_{z} + K_{23} \det R \cdot \varepsilon_{z}.$$
(14)

откуда ясно, что если выбрать коэффициенты К₁₃ и К₂₃, равными

$$K_{13} = \frac{\operatorname{tg} \theta_1 \sin \alpha_1}{\det R}; \qquad K_{13} = -\frac{\operatorname{tg} \theta_1 \cos \alpha_1}{\det R}, \qquad (15)$$

то выражения (14) примут вид $U_x = s_x$, $U_y = a_y$, а структурная схема системы гилирования на рис. 6 приводится к схеме на рис. 76.

Pnc. 6.

Отсюда следует, что в системе с двумя опорными звездами можно, при det $R \neq 0$, обеспечить описанным способом структурную инварчантность к возмушению Отметим, что одноосная система прямого или невосредственного гидирования по центральной (исследусмой) звезде (рис. 7а) также описывается структурной схемой на рис. 76. Значит, введение компенсирующих каналов с коэффициентами $K_{1,2} = K_{1,3}$ (15) сводит систему офестного гидирования по двум опорным звездам (рис. 6) к системе прямого гидирования по центральной звезде. Динамический синтез и анализ системы на рис. 76 можно проводить обычными методами теория одномерных следящих систем.

При неточкой реализании коэффиниентов K_{in} и K_{in} в системе на рис. 6 невозможно полностью исключить статическую ошибку от $f_{in}(p)$, что является недостатком структурного способа обеспечения инвариантности.

Инвариантность системы гидирования к возмущению $f_{*}(p)$ может быть достигнута также другим, кинематическим способом, за счет выбора состава и специальной схемы установки астродатчиков. В этом случае используются два однокоординатных астродатчика $\mathcal{A}A$ и $\mathcal{A}B$ с осями чувствительности Y_{*} и X_{6} (рис. 8а). Наведение астродатчиков на опорные звезды A и B производится их поворотом вокруг онтической оси телескова, соответственно, на углы α, н α₂ с последующим перемещением в радиальных направлениях на расстояния F tg 9₁ н F tg 9₂. Выходные сигналы астродатчиков при этом будут равны

$$U_{x_3} = F W_{x_2}(p) = (\cos a_1 \cdot \vartheta_x + \sin a_1 \cdot \vartheta_y),$$

$$U_{x_6} = F W_{x_6}(p) = (-\sin a_2 \cdot \vartheta_x + \cos a_2 \cdot \vartheta_y).$$
(16)

Структурная схема одноосной системы офсетного гидирования с радиальной установкой астродатчиков изображена на рис. 9. Между сепаразными каналами системы имеются язаимные связи, обусловленные непараллельностью осей чувствительности и осей стабилизации. Из рис. 9 видно, что рассматриваемая система инвариантиа к возмущению $f_{z}(p)$, т. е. ошибки и z_{z} не зависят от f_{z} при любом расположении опорных звезд в фокальной плоскости. Физически это объясняется тем, что оси чувствительности и X_{6} всегда направлены радиально к оптической оси телескопа. По существу, система на рис. 9 эквивалентна системе прямого гидирования по центральной звезде, в которой оси чувствительности астродатчиков смещены относительно осей стабилизации на углы α_{z} (рис. 86).

Рис. 9.

При принятых в статье условиях для возмущений и каналов стабилизации, вектор установившейся ошибки системы на рис. 9 разен

$$\overline{\overline{z}}(t) = -\frac{1}{K_v} M^{-1} \begin{bmatrix} v_x \\ v_y \end{bmatrix} = -\frac{1}{K_v} \begin{bmatrix} \cos \sigma_1 & \sin \sigma_1 \\ -\sin \sigma_2 & \cos \sigma_2 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix}, \quad (17)$$

где M матрица остественных язанмных связей, причем ее определитель det $M = \cos(\alpha_1 - \alpha_2)$ равен слинице при взлимно ортогональных осях чувствительности, т. е. при $= \alpha_2$ (рис. 8a).

Переходя в (17) к модулям, получим

$$|\overline{z}(t)| \leq \frac{|\overline{v^2 + v_1^2}|}{|K_2|} M^{-1}| = \frac{1}{|\overline{v_r^2 + \tau_V^2}|} \frac{1}{|\overline{1 + |\sin(a_1 - a_2)|}|}{\cos(a_1 - a_2)}$$
(18)

Здесь M^{-1} является снектральной нормой матрицы M^{-1} которая характеризует степень неортогонольности системы координат OX_5Y_6 . При $a_1 = a_2$ оси X_4 и Y_1 взаимно ортогональны и $M^{-1} = 1$. Если же $a_1 = a_2$, то норма M^{-1} становится больше единицы и возрастает по величине с увеличением разности $|a_1 - a_2|$. Это показывает, что скоростиая ошибка системы гидрирования на рис. 9 всегла возрастает по модулю при увелячения степеня неортогональности осей X_6 и Y_6 .

Устойчивость системы на рис. 9 может быть исследована методом декомпозиции при помощи двух одномерных систем с передаточными функциями 4 W (p) (i = 1, 2) [8], где

20

$$\lambda_{1,2} = \frac{\cos z_1 + \cos z_2}{2} + \frac{1}{2} \left[\frac{(\cos z_2 + \cos z_2)}{2} - \cos (z_1 - z_2) - (19) \right]$$

- собственные значения матрицы .М.

Недостатком системы гидирования с кинсматическим способом обеспечения инвариантности является наличие взаимных связей между каналами, которые при определенных положониях опорных звезд могут привести к потере устойчивости или значительному увеличению ошнбок гидирования. Важным преямуществом кинематического способа можно считать простоту реализации и мельшее число измеряемых отклонении два, вместо трех при структурном способе. К основному недостатку одноосных систем офсетного гидирования по двум опорным звездам следует отнести возможность потери астродатчиками опорных звезд при больших амилитулах возмущений вокруг оптической оси телескова.

0. ъ. ԳԱՄՊԱРՅԱՆ, Գ. Գ. ԵՂԻԱՉԱԲՅԱՆ

ԱՍՏՂԱԳԻՏԱՆՆԵՐԻ ՕՖՍՆԹԱՅԻՆ ՀԵՏԵՎՄԱՆ ՄԵԿԱՌԱՆ8ՔԱՅԻՆ ՀԱՄԱԿԱԳԵՐԻ ՏԵՍՈՒԹՅԱՆ ՄԱՍԻՆ

Ամփոփում

Գիտարկված են մեկ և երկու Տենակետային աստղերով աստղադիտակների օֆսեքային Տետեման մեկառանցջային Տամակարգերի կառուցման և սինքեդի Տիմնական սկզբունբները։ Կատարված է աստղադիտակի ֆոկալ մակերեույքում աստղային տվիչների տեղադրո՞ան երկու Տնարավոր կինեմատիկական սխեմաների Տամեմատական վերլուծումը։

ի Տայտ են բերված նման Տամակարդերի կառուցվածթային առանձնա-Դատկությունները և տրված են նրանց Տնանման ճշգրտության բարձրացման եղանուկները։

ЛИТЕРАТУРА

- Исследование космического пространства. Т. 5. Оптические системы и приемники изображения космических телескопов. М., 1976.
- 2 Gratz W. et all. A study of telescope maintenance and updating in orbit "Spaceoptics. SPIE Seminar proceedings", vol. 19, Santa Barbara, Calif., 1969.
- 3. Димитров 🕼 Бэкер Д. Телескопы. ОГИЗ, Гостехиздат, 1947.
- Chirappa D. J. Fine pointing and stability of space station experiments. "AIAA Paper⁺, № 71-62, Ian, 1971.
- McCarthy D. J. Operating characteristics of the Stratoscope II ballon-borne telescope "IEEE Tran. Aerospace and Electronic System", 1969, AES-5, Nº 2, 323.

- Morrison S. L. An image stabilization system for the Large Space Telespope (LST) Opt. Track. Syst. Proc. SPIE Semin., El Paso, Tex., 1971. Redondo Beach, Calif., 1971, 23.
- 7. Proise M. Fine guidance politing stability of a 120⁴ (3-m) LST. *AIAA Paper*, 1972, № 853, 11.
- 8. Морозовский В. Г. Многосвязные системы автоматического регулирования. М., «Энергия», 1970.
- Гаснарян О. Н., Егиазарян Г. Г. О дянамаческой точности многоспялных следящих систем. «Известия Академии наух АрмССР (серяя Т. Н.)», т ХХХП, № 1, 1979, 38—46.