24844446 002 948044844644 440966484 869644944 ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЯ ССР

Տեխնիկական գիտութ, սեբիա

XXXI, № 3, 1978

Серия технических наук

ЭЛЕКТРОТЕХНИКА

Б. М. МАМИКОПЯН, Л. С. ТОНОЯН

РАСЧЕТ МАГНИТНОГО СОПРОТИВЛЕНИЯ ФЕРРОМАГНИТНОГО ШАРОВОГО ЭКРАНА

В электромагинтной технике широко применяется ферромагнитный шаровой экран в качестве как экранирующего от внешних магнитных полей элемента, так и самостоятельного узла различных устройств. Однако отсутствуют теоретические работы по исследованию его магиплопроводящих характеристик. В настоящей статье определяется комплексное магнитное сопротивление ферромагнитного шароного экрана. Которое он оказывает переменному (синусопдальному) магнитному потоку.

Исходиыми данными для расчета являются: внешний R и внутренний r радиусы, а также материал экрана, т. с. его удельное комплексное магнитное сопротивление

где 🐅 🔊 актинная и реактивная его состанляющие.

Если между точками a и b (рис. 1) приложено магнитное напряжение \dot{F} , под действием которого через экран проходит поток Φ , то комплексное магнитное сопротивление Z шарового экрана, равное

$$Z=\frac{\dot{E}}{\dot{\Phi}}.$$

Для определения Z выделим из шарового экрана элемент, заключенный между двумя конусами, вершины которых расположены в центре шара, оси совмещены с осью a-b, а углы при вершине осевых сечений равны, соответственно, 2(z+da) и 2a. Осевое сечение данного элемента показано на рис. 2 жирными линиями. Его магнитное сопротивление в направлении силовых линий поля равно

$$dZ = \hat{\gamma}_z \frac{dl}{S} \tag{1}$$

Поскольку толщина стенки экрана намного меньше его раднусов, можно допустить, что эквивалентный поток протекает через среднюю сферу и поэтому длина dl дуги элемента равна

$$dl = \frac{R + r}{2} da.$$

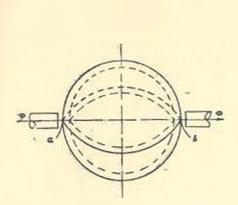


Рис. 1. Шаровой экран с потокоподводящим стержнем.

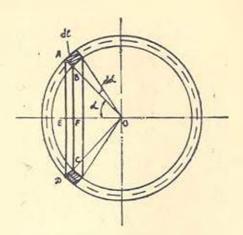


Рис. 2. Элемент шарового экраил.

Поперечное сечение элемента S_{α} , зависящее от α , представляет собой боковую поверхность усеченного конуса ABCД, в каждой точко которой поток перпендикулярен к этой поверхности:

$$S\alpha = \pi \cdot AB(AE + EF).$$

 \mathcal{N} читывая, что AB = R - r, $AE = R \sin \alpha$, $BP = r \sin \alpha$, получим:

$$S_a = \pi (R^2 - r^2) \sin \alpha.$$

Подставляя значения dl и S_{-} в выражение (1), получим магнитное сопротивление элемента экрана:

$$dZ = \frac{r_Z}{2 - (R - r)} \frac{d\sigma}{\sin \sigma} \tag{2}$$

Для определения общего сопротивления Z экрана необходимо интегрировать выражение (2) в пределах $0 \leqslant z \leqslant z$. Однако, этот интеграл будет равен бесконечности, т. к. в точках a и b (т. е. для значений a=0 и $\alpha=\pi$) $S_\alpha=0$. Физически это означает, что в группе последовательно включениых сопротивлений имеется такое, величина которого равна бесконечности, и тогда, независимо от значений остальных сопротивлений. Эквивалентное сопротивление группы будет равно бесконечности. В действительности этого нет. т. к. поток Φ входит в экраи не через точку a, а через определенную поверхность экрана вокруг этой точки. В каждом конкретном случае плошадь указанной по-

верхности зависит как от конструкции и размеров потокоподводящего стержия, так и от величины воздушного зазора между стержнем и экраном, т. к. от последней зависит величина потока рассеяния. Кроме того, необходимо учесть, что в конечной части потокоподводящего стержия силовые линии магнитного поля смещаются от оси стержня к его периметру (рис. 3), стремясь выбрать путь наименьшего сопротив-

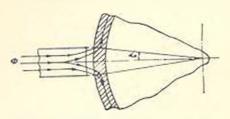


Рис. 3. Приближенная картина магинтного поля у входа в экран.

ления. Указанные обетоятельства позволяют допустить, что поток Ф входит в экран по периметру стержня (при небольших величинах зазора), поэтому начальное значение угла а будет

$$a_0 = \arcsin \frac{d}{2R}$$
.

где d — диаметр стержия.

Поскольку поток через экран общий, а на его пути сечение S., минимальное, то в этом сечении нидукция максимальна и равна

$$B_{-11} = \frac{\Phi}{-(R^2 - r^2)\sin \alpha_0} = \frac{2R\Phi}{-d(R^2 - r^2)}$$
(3)

Если параметры экрана выбраны такими, что значение B_{max} , рассчитанное по (3), не выходит за верхний предел линейного участка кривой намагничивания материала экрана, то значения ϱ_R и ϱ_χ можно считать постоянным для всех участков экрана [2]. Учитывая также, что конструкция экрана симметрична, получим его магнитное сопротивление:

$$Z = \frac{2\epsilon_R}{2\pi (R-r)} \int_{-\infty}^{\infty} \frac{d\alpha}{\sin \alpha} = \frac{\epsilon_R}{\pi (R-r)} \cdot \ln \frac{1}{\log \frac{\alpha_0}{2}}$$

Выражая $\operatorname{tg} \stackrel{4}{=}$ через $\sin \alpha_0$ и $\cos \alpha_0$ и учитывая, что обычно $4R^2 \gg d^2$, окончательно получим:

$$Z = \frac{\dot{\rho}_Z}{\pi (R - r)} \ln \frac{4R}{d} \,. \tag{4}$$

Формулу (4) можно использовать при расчете и конструировании магнитного шарового экрана. Рассмотрим пример се применения. Пусть требуется конструировать шаровой экран со следующими данными: R=0.04 м; d=0.008 м; $Z \leqslant 4\cdot 10^6$ 1/гн. Необходимо определить толщину стенки экрана.

В качестве материала для экрана выбираем сталь 35. Из зависимостей удельных магнитных сопротивлений от величины индукции для стали 35 [3] находим значение и ρ_X на линейном участке кривой намагничивания: $\rho_X = 22 \cdot 10^2$ м/гн и $\rho_X = 32 \cdot 10^2$ м/гн.

Согласно (4), модуль сопротивления экрана

$$Z = \frac{1}{\pi} \frac{\rho_R^2 + \rho_X^2}{\pi (R - r)} \ln \frac{4R}{d},$$

откуда находим толщину стенки:

$$R = r = \frac{10^{2} \cdot 1}{3.14 \cdot 4 \cdot 10^{8}} \cdot \ln \frac{4 \cdot 0.04}{0.008} = 9.25 \cdot 10^{-4} \text{ m}.$$

Толщину стенки выбираем равной 0.001 м

Найдем допустимую величину потока Φ , при которой индукция в наиболее малом сечении экрана еще не выходит за пределы линейной области. Для стали 35 это значение индукции (амплитудное значение) равно $B_{\rm max} = 0.5~m.s$ [3].

Допустимое амплитудное значение потока определяем на формулы (3):

$$\Phi_{\text{max}} = \frac{-d (R^2 - r^2)}{2R} B_{\text{max}} = 1,24 \cdot 10^{-3} B.$$

Проведенные авторами экспериментальные исследования магнитных шаровых экранов подтвердили хорошее соответствие полученных формул практике.

Ленинаканский фил ЕрПП им. К. Маркса

Поступило 20.18.1977

Ք. Մ. ՄԱՄԻԿՈՆՅԱՆ, Լ. Ս. ՏՈՒՈՅԱՆ

ՖԵՐՈՄԱԳՆԻՍԱԿԱՆ ԳՆԳԱՁԵՎ ԷԿՐԱՆԻ ՄԱԳՆԻՍԱԿԱՆ ԴԻՄԱԳՐՈՒԹՅԱՆ ՀԱՇՎԱՐԿԸ

Առաջարկված է ֆերոմադնիսական դնդաձև էկրանի կոմպլեքս մագնիսական դիմադրության հաշվարկի մեթեղը այն դեպքի համար, երբ որպես հոսրամատուցող հարմարանք օգտագործվում է կլոր կարվածքով և հայտնի տրամագծով ձողը։ Ստացված բանաձևերը կարելի է օգտագործել դնդաձև էկրաններ նախագծելիս։ Բերված է էկրանի պատի հաստության հաշվարկի օրինակ։

ЛИТЕРАТУРА

- Буль Б. К. Основы теории и расчета магнитных цепей. Изд. «Эвергия», М., 1964, с. 54—55.
- 2. Куликовский Л. Ф., Заринов М. Ф. Индуктивные преобразователи перемещения с распределенными параметрами. Изд. «Энергия», М., 1966. с. 12.
- 3. Рашкович М. П. и др. Индуктивные преобразователи для автоматизации металлорежущих станков. Игд. «Машиностроение», М., 1969, с. 91.