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BINARY CLASSIFICATION MODELS WITH
SOCIO-ECONOMIC METRICS

There is a rising interest towards ethical aspects of artificial intelligence. In this
article we mention and discuss that a lot of decision support machine learning systems in
spite of being highly accurate are not trained to reveal, measure and mitigate socio-
economic bias of human nature. Analyzing the previous research on the topic we suggest
our methodology - an evaluation of a binary classification model by five different criteria -
accuracy, fairness, explainability, adversarial robustness, robustness to distribution shift.
And furtherly we show and apply the methodology on eight different socio-demographic
datasets and provide suggestions based on empirical analysis.
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With more and more Al-based solutions in social applications,
such as jurisdiction, finance, etc. performance measures of models need to go
beyond accuracy measures to assure its safety and to make it trustworthy. Some
of them are distribution shift robustness, fairness w.r.t. protected groups
interpretability and explainability, adversarial attacks robustness, which are
recognized commonly ‘trustworthy machine learning.

From the business point of view, each decision-making system has different
stakeholders. For example, banks give loans with an objective to have the lowest
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default rate, which will be reflected in accuracy metric. Also, governments/NGOs
require the system to be unbiased towards some groups (gender, ethnicity, etc.)
and the applicant requires an explanation of the application result (whether
rejected or not) which will be reflected in fairness and explainability respectively.
In the context of the mentioned problem, we aim to empirically answer the
following questions.
Which couple of metrics has trade-offs and which couple can be
improved to Pareto optimum?
Which nature of models are good or bad for the different criteria?
How to mitigation respective bias or defend from perturbations?
How consistent can the patterns be across varied data?
Furtherly we discuss the suggested methodology, 4 different algorithms of
machine learning, apply each of them on 8 different datasets with socio-
economic attributes and measure trustworthiness of the models.

The disparate impact over different occasions of human
activities have been mentioned in the literature for ages but had its first
appearance in Age Discrimination in Employment Act of 1967 in the United
States signed by President Lyndon B. Johnson. It applied to pension standard
and benefits by the employers, and required that the public must be aware of the
age-related standards. However, the analysis was moved into quantifying form
quite recently as many researchers suggest methodology on computation and
mitigation of disparate impact. In this paper we discussed Reweighing
algorithm due to is simply form of application. Another methodology is
Adversarial Debiasing® suggested by Stanford University and Google Al; point is
to add logarithm of feature biases as a loss term.

Speaking of adversarial learning, this technique has evolved from fooling
neural networks to misclassification to generating super-realistic images and face
imaging. With their paper*® on this topic, Goodfellow et al. first showed the
vulnerability of Al models to perturbated samples which mostly comes from the
complex non-linear nature of the models. We used a metric*® to calculate impact
of slight impact on the features to the model outcome.

The issue of interpreting inferential models has been around since the
models itself were discovered, and the more complex models become the less
explainable they seem to be. One-fits-all solutions are rarely available, or have
trade-off with performance. We chose the model-agnostic linear explainability
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approach using LIME®® model as we aim to compare different ML models and not
to find the best explanation for a model.

For the analysis we implemented multi-dimensional

analysis using different groups of metrics for classification task.
For predictive performance we considered two measures, accuracy and
balanced accuracy. Accuracy of the binary classifier model processes the total

number of correct predictions, and is so:
P + TN

" TP + FP +TN +FN

where TP is the number of True Positives, TN is the number of True
Negatives, FF is the number of False Positives, and FIN is the number of False
Negatives.

Though balanced accuracy is a proportioned measure for accuracy, and we
use it to score models that predict outcomes from data with imbalanced labels.

Balanced accuracy can be defined as
1 TP TN

Gr e TNt AN

Many other performance metrics are also often considered, based upon the
task we solve, such as F1 score, AUC — ROC, and True Positive Rate (aka
sensitivity); in this research we only consider accuracy and balanced accuracy.

Numerically quantified fairness is classified to following subgroups: Group
versus Individual fairness. With Group fairness we analyze the relationship
between different groups with respect to the sensitive/protected attributes: it
measures the differences (ratios) of desired outcomes. We measure outcomes
both from the data itself and, in our case, from model predictions. With
Individual fairness we examine the rate of outcomes for similar groups of
individuals which have been clustered along a number of the variables, indeed
excluding sensitive/protected attributes. Here we consider a commonly used ratio
group fairness metric, Disparate Impact™:

PV =1|D = unprivileged)

P(¥ =1|D = privileged)

where ¥ = 1 is the desirable outcome. The value ranges between 0 and 1
implying an absolute discrimination and absolute fairness respectively.

Furtherly, for the mitigation of the results we applied a popular pre-
processing algorithm, Reweighting®2, which modifies sample weights for each
protected attribute-label sub-group.

Measuring the interpretability of a model, we created local explanations for
a randomly selected data sample (without replacement) using LIME, then

Accuracy

Eaolanced Accuracy =

Disparate I'mpact =
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calculated the average faithfulness metric of the generated explanations.
Faithfulness® of a data point was measured as the correlation between the
importance value by LIME®* to different variables in making a model prediction
for that sample and the effect for each attribute on the prediction confidence.

From the point of view of ethical Al, we want to train a model that is as
robust to adversarial attacks as possible, that is insignificant changes made to
original features which lead to change of model outcome. The adversarial
robustness of a model, as matter of fact, cannot be computed in a generic
manners; it is, in fact, estimated with respect to specific and intentionally created
adversarial examples. Here we generated a few adversarial examples using a
model-agnostic algorithm, HopSkipJump®°, samples were later used to evaluate
the Empirical Robustness, that is the average minimum perturbation which an
attacker must apply for an attack to be a success.

Also, we evaluate the robustness of different models to attribute distribution
shift, creating shifted datasets for each dataset by partitioning each into two
parts, based on some attribute (ex. region).

We used four different classification algorithms: logistic regression (LR),
random forests (RF), gradient boosting (GBC), and multilayer perceptron (MLP).
Cross validation of 5 folds was used for the experiments. For each cross-
validation split, we did the following:

The training dataset was used for building the four independent models.
Categorical features are transformed to one-hot encoded, and feature
standardization was done for numeric features by centering and scaling.
The trained models were later evaluated based on the test data.

All models were further tested using the shifted dataset.

Bias mitigation algorithm was applied on the training data and the
debiased dataset was then used to train the four models which were
again tested on the test data.

The models learned in step 3 were also tested on the shifted dataset.

The estimates for all the metrics were calculated using the five splits. For
faithfulness of explanations, LIME algorithm was used for generating local
explanations and 50 random samples were feed to the model to output the mean
faithfulness score. For empirical robustness, 20 random samples were used to
generate adversarial samples. Three open-source toolkits, AIF360, AIX360, and
ART, were used to evaluate model fairness/bias mitigation (disparate impact and
reweighing), explainability (faithfulness), and adversarial robustness (empirical
robustness), respectively.
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Data and Findings. For the analysis we used 8 diverse (by domain, size,
sensitive attribute, etc.) dataset. In this section, we will discuss the datasets and
provide with descriptive statistics.

HMDA%¢ - First dataset contains the 2018 mortgage application data
collected in the U.S. under the Home Mortgage Disclosure Act. It consists of
1,119,629 applications for single-family and principal-residence purchases. The
outcome is to predict whether a mortgage is approved or not, and ethnicity was
used as the protected attribute (non-Hispanic Whites vs non-Hispanic Blacks),
other races are skipped for the consistency of experiment. State feature is used
for dataset shift split. White approval rate was 94.4% historically and as for the
Black it was 86.4%.

MEXICO>” - Coming from the household survey (2016) in Mexico, next
dataset includes demographic and poverty-level features for 70304 Mexican
households. The purpose is to predict whether a family is poor or rich. For
protected feature, we have age. We use the ‘urban’ variable to partition the
dataset into the shift and base datasets: urban residents’ data are used for
training or testing the model while rural residents’ data are used only for
distribution shift tests. There are 53.2% young families in the base dataset, and
52.5% in the shift dataset. 39.5% of the young and 29.7% of the old are
historically classified as poor.

ADULT?®® - The Adult dataset, which comes from the UCI ML repository, has
demographic and financial data on 48841 individuals from the US Census
Bureau database. We aim to predict if an individual’s income exceeds $50K/year.
We treat race as the protected attribute. We partitioned the data on the feature
called ‘native-country’: ‘United-States’ residents are retained in the base dataset
while the rest are - for distribution shift. The target variable is “true” for 25.2%
(26.8% for ‘whites’, 13.8% for ’non-whites’) of the training dataset and 19.2%
(17.5% for ‘whites’, 23.1% for ‘non-whites’) of the shift data.

BANK?>® - The Bank Marketing dataset, again from the UCI repository, uses
data of marketing campaigns by a Portuguese bank. The outcome is to predict
which customers will subscribe to a term deposit. Shift distribution split is done
by the month in which the latest contact was made with the customer. The
sensitive feature is age (=25 or not). 11.32% of the people in the training dataset
subscribed to a term deposit (18.74% of the young people and 11.2% of the old)
while 19.78% of the people in the shift dataset did not subscribe (57.2% of the
young and 19.11% of the old).

% Home Mortgage Disclosure Act (HMDA) Snapshot National Loan Level Dataset, Federal Financial
Institutions Examination Council (FFIEC), U.S. Government. 2018.
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FIA® - The Financial Inclusion in Africa (FIA) contains financial services and
demographic data for 33611 individuals from 4 African countries: Tanzania,
Kenya, Rwanda and Uganda. We used the publicly available ‘train’ component
consisting of data for 23523 individuals. We aim to predict who is probable to
have a bank account. The protected attribute considered s
‘gender_of_respondent’, and ‘country’ feature is used to split the dataset to test
for distribution-shift. There are 41.6% males in the training dataset and 34.2%
males in the shift dataset. Finally, 14.6% have bank accounts in the train dataset
(19.6% of men, 11.2% of women), while the respective number for the shift data
is 8.7% (11.6% of men, 6.9% of women)

MEPS®' - The Medical Expenditure Panel Survey (MEPS) data is a set of
annual surveys by the US Department of Health and Human Services. Every year,
a new panel is started and interviewed for five rounds during the next two
calendar years. The data consists of 2-year longitudinal - panel 19) as the base
training/testing dataset (8137 records) and panel 20) as the shift dataset (8736
records). The goal is to predict patients that would have high second-year
spendings, based on first-year demographic and health attributes. Race is used
as the protected feature (64.2% White in training data and 67.8% White in shift
data). High spending patients are 9% of people in the training set (10.26% of
Whites and 6.77% of Blacks), and 10.1% in shift set (11.33% of Whites and 7.1% of
Blacks).

GERMAN®2 - The German Credit dataset is the creditworthiness of over
1000 people. The aim is to predict which people will have good credit. We use
‘gender’ as the protected. The data is split using the ‘foreign worker’ attribute.

a. Accuracy

GBC — LR —MLP —RF

HMDA MEXIC

(o]
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b. Balanced Accuracy
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e. Empirical Robustness
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Performance metrics for trained models

HEART®® - The Cleveland Heart dataset is a small 304 record dataset.
Considering the size of the dataset, we will not create a distribution-shift dataset.
The protected feature is ‘age’ above or below the mean value (54.6 years):
53.6% have age above this value.

Figure 1a and 1b show us how well the models of different algorithms
performed on the different datasets w.r.t. accuracy and balanced accuracy.
While gradient boosting classifier (GBC) models mostly had the best accuracy for
the datasets, they typically are the worst performers for the balanced accuracy.
At the same time, multi-layered perceptron (MLP) models performed poorly in
terms of accuracy, and had better balanced accuracy, mostly for the larger data.
Random forest (RF) models are often not the best, but performed quite well on
most of the datasets on all the metrics for the smaller datasets respective to its
boosting origin. Logistic regression (LR) models are robust showing good
balanced accuracy, but have relatively poor accuracy.

W.r.t fairness, all datasets have historical discrimination between the
privileged/unprivileged groups as we defined the sensitive attributes. Yet this
“unfairness” did not exhibit itself similarly in all the models (Figure 1c), e.g. the
HMDA data, although the GBC was almost fair at 0.94, LR was unfair with DI of
0.25. In the case of BANK, two models were biased for young people and the
other two were biased against older ones. Yet, in some other cases, e.g. ADULT,
MEXICO, fairness measure was similar for all the models.

As mentioned before local explanations were generated by LIME and
evaluated using faithfulness metric (Figure 1d). LR performed the best,
describing its linear nature, while MLP as a black-box model were the worst, the
same applies to the other non-linear and tree-based aggregation models.

8 Detrano, R., Janosi, A., Steinbrunn, W., Pfisterer, M., Schmid, )., Sandhu, K., Guppy, S., and
Lee, V., Froelicher, S. (1989), International application of a new probability algorithm for the
diagnosis of coronary artery disease. American Journal of Cardiology 64, 304-310.



134

As to adversarial attacks (Figure 1e), GBC and RF were the most robust, and
LR and MLP performed poorly. Such behavior comes from the training
methodology. GBC and RF are voting classifiers, i.e. the result is concluded using
different tree-based models and perturbated examples can not have direct effect
on the results, while LR and MLP are single-model classifiers and often optimized
with SDG optimizers which are easily compromised.

Bias was mostly mitigated using reweighing, as we see on the peaks in the
second points of the line graphs. Yet the fairness achieved was dependent on the
initial training data, RF was not able to benefit from mitigation in contrary to
GBC, LR, and MLP (in the figures RF plot, violet lines, has smaller relative
change). Generally bias mitigation comes with the lower accuracy of the models,
the decrease is quite small for GBC and RF and more exhibited for MLP. Bias
mitigation yielded a fair change in explainability (faithfulness metric). Likewise,
adversarial robustness decreased through bias mitigation, sometimes quite
enormously, yet there are some instances where it shows an increase.

The third point for each line graph shows that accuracy suffers as
distribution of the data shifts. It varied between datasets, yet it was quite obvious
(10-15%) for some models and datasets (FIA, Mexico, and Bank). GBC accuracy is
quite robust to distribution shift.

This work presents the necessity of multivariate evaluation of
machine learning models, and implements it for 5 different phenomena. We
discovered that in spite of better predictive performance, cutting edge algorithms
lacked ethical efficiency, such as explainability. Models of linear nature, in our
example - logistic regression, provides better explainability and overall
robustness, but have no predictive advancements. Moreover, we showed a
minimal example of bias mitigation, reweighing, which has a tradeoff with
accuracy that is more sever bias mitigation needs more “sacrifice” of model
accuracy. Assumptions and hypothesis are supported with empirical analysis for
eight datasets from different socio-economic situations.

On average reweighting results 31.4%+4.8% better disparate impact metric.
It has non-significant impact on accuracy on ~40% of the cases from which it has
significant impact on disparate impact on ~62% of the cases on non-shifted
dataset. That means that ~25% of the models can be fairness-optimized with no
trade-off with accuracy. The respective result is ~17% for the distribution shifted
dataset.

For the future analysis we plan to discuss and implement some of the
following. First of all, our goal will be to choose the most favorable model from
the socio-economic point of view. For this we adopted more problem-oriented
approach which is to create aggregations over a specific matter of issue. Then we
plan on researching and implementing mitigation algorithms for different
phenomena - explainability, robustness to distribution shift and adversarial
attacks, in addition to fairness. While discovering 5 different phenomena at the
same time we plan to reach the Pareto optimum and build the optimal frontier to
make sure that each model is absolutely robust by one metric with respect to the
other metrics.
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FEBOPI TAJIAYAH
AcnupaHm kagheOpbi Mamemamu4eckKozo MOOeIUPOBAHUA 8 SKOHOMUKE
EpesaHckozo 2ocydapcmseHHo20 yHUBepcumema

MhuozomepHas oyeHKka coyuanbHO-3KOHOMUYECKUX NOKa-
3ameneli ¢ nomowbto modesneii 6uHapHoli Knaccugpukayuu.—
B HacToALlee Bpema HabniogaeTca pocT MHTepeca K 3TUHECKUM
acrnekTam WCKYCCTBEHHOrO MHTennekTa. B paHHoili cTaTbe nopyep-
KMBaeTcA, YTO MHOTME CUCTEMbl MaLLMHHOFO 0byyeHuA, HECMOTpA
Ha BbICOKYIO TOYHOCTb, HE B COCTOAHWM BbIABNATb, U3MEPATb U
CMArYaTb OTKJIOHEHWA, O6YCNnoBNEHHble COLMaNbHO-IKOHOMMUYE-
cKuMK xapakTepuctukamun. C onopoii Ha aHanu3 CyLLEeCTBYHOLLMX
nccnefoBaHnii No JaHHOMY BOMPOCY aBTOPOM rfpepfaraerca cob-
CTBEHHaA MeTOf0/0MA - OLeHKa Moaenn buHapHoi Knaccuduka-
UMM MO MNATU PasfMyHbIM KpUTEPUAM: TOYHOCTb, CrpaBepsn-
BOCTb, OOBACHUMOCTb, COCTA3aTeNbHaA HaLEKHOCTb, YCTONYU-
BOCTb K CABWIy pacrnipefenenua. B ctaTbe Takme npepcraBieHo
MPUMEHEHVE YKa3aHHOW METOAONOTUM K BOCbMU PasiNyHbIM
Habopam [aHHbIX, a Takie NpuBeAeHbl BbIBOAbI, OCHOBaHHbIE Ha
3MMNVPUYECKOM aHanmn3e.

UCKyccmseHHbil uHmennexkm, npomusobopcmasy-
rowaa ycmoliyusocms, cosue pacnpedeneHus, cnpasednusocms, 06bA-
CHUMOCMb
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