2U34U4UV UU2 ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԴԵՄԻԱՑԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Sibilitating appears. ubrhm XXIX. No 5, 1976

Серия технических наук

ГИДРАВЛИКА

э. п. ащиянц

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ГИДРАВЛИЧЕСКОГО УДАРА С РАЗРЫВОМ СПЛОШНОСТИ ПОТОКА

Экспериментальное исследование гидравлического удара в напорных водоводах дает возможность ясиее представить физические процессы, возникающие при этом явлении, а также внести соответствующие коррективы в теоретические разработки.

Особый интерес представляют прямые гидравлические уляры, когла длительность возмущения потока в каком-либо сечении водорода не превышает времени пробега волны возмущения от данного сечения до места отражения и обратно. При прямых гидравлических ударах давление в водоводе может достичь значительной величины. Существуют теоретические проработки [1], в которых доказывается, что при определенных условиях максимальное давление в водоводе может достичь величины

$$H_{\text{max}} = 3H_{cl} + \alpha v_b g^{-1}, \qquad (1)$$

где M_{\star} — статический напор водонода; a — скорость распространения упругих колебаний; v_0 — скорость движения жидкости при установившемся движении; g — ускорение сплы тяжести.

Однако до сих пор экспериментально удалось зафиксировать максимальное давление, равное

$$H_{\text{max}} = 2H_{\text{cr}} + av_0 g^{-1}. \tag{2}$$

Трубопроводы, на которых проводились эти эксперименты и получены такие величины давления [2; 3] "имели сравнительно малый внутренний диаметр (50—82 мм). Гидравлические удары создавались очень быстрым закрытием крана, и время закрытия крана не менялось при проведении экспериментов. В опубликованных экспериментальных работах, как правило, давление измерялось в каком-либо одном сечении водовода (чаще всего в начале водовода). Исследованию же изменения напора и скорости жидкости по длине водовода при гидравлических ударах уделяется меньше виимания.

Целью экспериментов, проводимых в гидравлической лаборатории АрмНИИ ВПиГ, явилось выяснение следующих вопросов:

- Определение максимального давления, возникающего в трубопроводе при гидравлических ударах с разрывом сплошности потока;
 - 2. Исследование изменения напора по длине водовода при гидра-

влических ударах и влияние времени закрытия затвора - на величниу напора.

Экспериментальная установка (рис. 1) представляет собой стальной грубопровод с внугренним днаметром 95 мм. К одному из его коннов присоединен насос марки 4K-12, а к другому концу напорный бак, в котором установлен треугольный водослив для намерения поступаю-

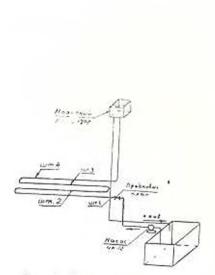


Рис. 1. Схема экспериментальной установки

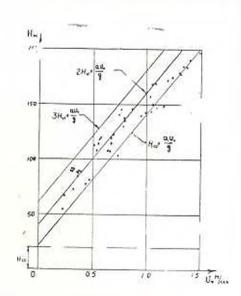


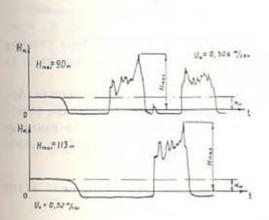
Рис. 2. Экспериментальная зависимость полученияя у пробкового крана

шего расхода воды. Трубопровод имеет горизонтальный участок в виде змеевика общей длиной 207 м, который заканчивается вертикальным стояком длиной 19,2 м. В начале горизонтального участка смонтирован пробковый кран, с номощью которого поток отсекается от насоса. Время закрытия пробкового крана менялось в широких пределах. Установка работает по циркуляционной схеме; насос забирает воду из бассейна и нагнетает ее в напорный бак, откуда по сливному трубопроводу она опять возвращается в гот же бассейн. Статический напор у пробкового крана равен 20,4 м. По длине трубопровода приварены штуцера, позволяющие измерять давление в различных сечениях водовода. При нестационарных режимах давление в трубопроводе измерялось тензометрическими датчиками «ТДДМ». Электрический сигнал от датчиков воступал на усплитель 8АНЧ-7М, а затем—на осщиллограф Н-107, который фиксировал на фотобумаге колебания давления в трубопроводе.

В экспериментах гидравлические удары начинались с понижением давления. Такие удары обычно возникают в напорных водоводах насосных станций.

Скорость течения жидкости в экспериментах изменялась в пределах $0.25 \div 1.5$ м/сек.

Измеренные при гидравлических ударах с разрывом сплоиности потока напоры у пробкового крана (при различных начальных скоростях v_0) напесены на график $H = f(v_0)$ (рис. 2). На этом же графике проведены прямые, выражающие зависимости:


$$H = H_{c1} + av_{c2} + H = 2H_{c2} + av_{c3}g^{-1}$$
; $H = 3H_{c2} + av_{c3}g^{-1}$.

Значение a в экспериментах менялось в пределах 1180—1220 м/сек. На рис. 2 при проведении прямых принято a=1200 м сек. Как вилно из рис. 2, при определенных значениях = максимальный напор у пробизвого крана достигал величины $H_{max}=2$, $5H_{cr}+av_0g^{-1}$.

Следует отметить, что такое двиление возникало только в случае, когда время закрытия пробкового крана было меньше 0,1 сек. На рис. З приведены осциллограммы изменения ивпора у пробкового крана, при которых напор достигал величины $2,5H_0+av_0g^{-1}$.

Экспериментальные данные, приведенные на рис 2, показывают, что с увеличением начальной скорости v_0 через определенные интервалы (0,22—0,23 м/сек) данление скачкообразно понышается, и и целом изменение напора и зависимости от начальной скорости в определениом интервале (0,25—1,1 м/сек) имеет ступенчатый характер. При $v_0 \ge 1,5$ м/сек H

На рис. 4 приведен график $H = f(v_s)$ для середины трубопровода H_1

Ряс. 3. Осциланграммы довленяя, сяктые у пробховиго крана

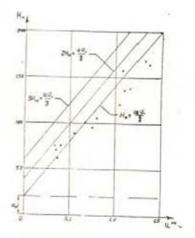
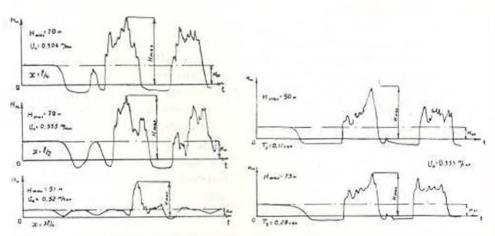



Рис 1 Экспериментальная зависимость $\mathcal{H}=f(\mathbf{v}_0)$, полученияя в середине трубипровода

этого графика видно, что максимальный напор здесь иначительно меньше, чем у пробкового крана, несмотря на то, что статический напор в данном сечении подовода не изменился. Это говорит о гом, что распространение скачка давления по длине водовода не одинаково. Кроме того, характер изменения напора в различных сечениях водорода различен. На рис. 5 приведено несколько осиналограмм, спятых в различных сечениях горизонтального участка водовода.

Из графика на рис. 2 явствует, что при одной и той же скорости $v_{\rm o}$ получаем различные величины напора. Одной из причин этого является то, что время закрытия затвора было не одинаковым. На рис. 6 пока-

в различных сечениях трубопровода

Рис. 5. Осциллограммы давления, сиятые Рис. 6. Осциллограммы давления, сиятые при различном времени закрытия пробкопото крана

заны осниллограммы, полученные при одной и той же начальной скорости, но при различном времени закрытия пробкового крана. Из осциллограмм видно, что с увеличением времени закрытия затвора уменьшается промежуток времени, в течение которого у затвора существует вакуум, и, тем самым, уменьшается напор.

Резюмируя, отметим, что на экспериментальной установке Арм. НИИВНИГ удалось зафиксировать величину напора в водоводе, равную $2.5H_{10}$ $\pm av_0g^{-1}$. Кроме того, экспериментально доказано, что изменение скачка давления по длине водовода не одинаково, и характер колобания напора в различных сечениях водовода различен.

АрмИИИВПи

Поступило 19.1.1976.

է. Պ. ԱՇՉԻՅԱՆՑ

200006816 ԱՆԸՆԳՀԱՏՈՒԹՅԱՆ ԽԶՄԱՄԲ ՀԻԳՐԱՎԼԻԿԱԿԱՆ ՀԱՐՎԱԾԻ ՓՈՐՉԱՐԱՐԱԿՍՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆ

Undandard

Հողվածում բերվում են հոսանրի անրնդհատության իսյմամբ հիդրավլի. կական հարվածի փորձարարական ուսումնասիրությունների արդյունընհրթ։ Փորձերը կատարվել են Ջրային այրորլեմների և հիղրոտեխնիկայի գիտանետագոտական ինստիտուտի փորձարարական տեղակայանքի վրա։ Ստացված տվյալները թույլ են տալիս դատել առավելագույն ճնշման մեծության մասին, որը կարող է տռաջանալ ճնշման խողովակաշարում հիդրավլիկական հարվածի ժամանակ, և ավելի պարզ պատկերացնել ընթացող Ֆիգիկական երևույթները։

JUNEPATYPA

- 1 Указания по защите водоволов от гидрянлического удара. Госстройнадат, 1961.
- 2. Мошнин Л. Ф., Тимофеева Е. Т. Повышение давления при гидравлических ударах, сопровождающихся разрывом силошности потока. «Водоснабжение и санитарная техника», № 7, 1965.
- Смирнов Д. Н., Зубов Л. Б. Экспериментальные исследования гидраплического удара, сопровождающегося казитацией потока ВОДГЕО, Труды лаборатории инженерной гидравлики. Сборник № 13, 1972.