ланияны под эрхирального илиэроговар устранар ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОН ССР

Побывараб аралии, высрая XXV, № 3, 1972 Серия технических наук

электротехника

S. C. SPOBMAH, K. C. JEMHPYSH, C. J. HIMVTEP

МОДЕЛЬ ВИБРАЦИИ АСИНХРОННОГО ЭЛЕКТРОЛВИГАТЕЛЯ

Очевидна важность разработки мер по снижению инбраций электрических машин, вызванных производственными дефектами. особенно в свете внедрения ГОСТ 16921 71 (Машины электрические. Нормы вибрации). Для устранения значимых составляющих вибрании необходимо выявление их источников, т. с. виброднагностика. Поскольку снектр является не только исчернывающей характеристикой вибрании. но и причин, ее порождающих, для вибродиагностики важно установление связи характеристик дефектов с соответствующими им сцектральнымя составляющими.

Вибрация корпуса аспихронной электрической машины на подшипниках качения возбуждается анизотронней воздействия на ротор и статор вращающихся силовых элементов систем полюсов и шаров. Поскольку магнитные полюсы и шары в сепараторах врашаются асинхронно относичельно ротора, эдесь возможен слинообразный подхол на основе рассмотрения взаимодействия аспихронного силового элемента а. с. э. (полюсы, шары) с дефектами ротора (некруглости бочки вотова, желобоя внутренних колец полшилинков) и статора (некоупости расточки статора, наружных колец).

Свловой элемент, имсконый Z, полюсов (шаров), характеристику силового ноля F_c(\$) протяженностью то и вранающийся со скоростью », относительно неподвижной системы координат ху (рис. 1), взаимолействует с вращающимся (внутренним) дефектом, имеющим характеристику Г. (9) протяженностью 2. в связанной с ним вращающейся со скоростью на системе координат. и или с неподвижным (наружным) дефектом, имеющим в системе лу характеристику F₀ (\$) протяженностью 🤋 и начальный угод 🕫

Необходимо установить зависимости спектров вертикального (у) и горизонтального (х) вибродатчиков от характеристик дефектов и а. с. э. Примем вначале простейший характер взаимолействий-дефекты и полюсы сосредогочены, г. с. ½, эн эн $\frac{2\pi}{2}$ и могут рассматриваться как 4-функции. Тогла взаимодействие а. с. э. с. лефектами характеризуется произведениями площадей Г. Г. и или Г. Г. причем, для выявления соотношения амплитуд-свектральных составляющих важен лишь относительный масштаб этих величии.

Вааимодействие а. с. э. с иеподвижным дефектом в этом случае приводит к последовательности импульсов (решетчатой функции [1]) с частотой повторения $Z_c \omega_c$ (рис. 2,*a*). Вибрании по осям координат *х.* у получаются умножением этой последовательности на созрав и slupped соответственно, т. е. отличаются только по амплитуде. Спектр такой последовательности [2] является гармоническим с амплитудами, равными для всех составляющих (частотой $kZ_c \omega_c$, гле k = 1, 2, 3...)и равными амплитуде исходных импульсов.

Взаимодействие а, с. э. с вращающимся лефектом приводит в пращающейся системе координат к последовательности импульсов по рис. 2,а, по с частотой повторения $Z_{cl} \otimes_{n}$ а в неподвижной системе координат вибрации по осям X и у получаются умножением этой последовательности на соз $\otimes_{n} t$ и sin $\otimes_{n} t$, соответственно (рис. 2.6). Снектр такой амплитудно-модулированной последовательности импульсов [2] также характеризуется равными амплитудами всех сосгавляющих, но уже на частоте вращения \otimes_{n} и на боковых частотах $kZ \otimes_{n} = 0$ причем, амплитуды составляющих равны половияе амплитуды импульсов исходной воследовательности. При этом вибрации по осям X и у для всех составляющих спектра сливнуты между собой на угол =l2

Таким образом, воздействие вращающегося дефекта сводится к набору вращающихся некторов вибрации, а неподвижного тефекта к набору пульсирующих и паправлении Фло векторов. Этот вывод, впрочем, очевиден, так как вращающийся дефект не имеет какого-либо преимущественного направления воздействия в неподвижной системе координат: при возникновении же такой анизотропии, связанной с появлением неподвижного дефекта, круговое поле вибрании деформируется в эллиптическое и в пределе (только сосредоточенный неподвижный дефект) вырождается и пульсирующее.

В приведенных рассуждениях линамическая система принималась безынерционной. Если, в первом приближении, полагать динамическую систему линейной и изотропной в пространстве, то спектры по осям х и у должны умножаться на передаточную функцию $W(j_0)$ системы. Проиллюстрируем это на простейшем примере взаимодействия одного

12

сосредоточенного полюса (с единичной илощалью) с распределенным вращающимся дефектом. Очевидно (рис. 1), элементарное движение вдоль оси х системы с весовой функцией h(t) при воздействии полюса на угле 4 можно занисать как

$$dx = F_{\rm s}(\psi) \cdot d\psi \cdot \cos(z - \psi) \cdot h(z), \tag{1}$$

гле = время, отсчитываемое от момента этого элементарного воздействия.

Принимая при $t : 0 = \phi = \phi = 0$ и подставляя в (1)

$$\omega = \omega_{\rm H} t$$
, $\omega_{\rm h} = \omega_{\rm c} t$,

лвижение x(t) выразим интегралом свертки

$$x(t) = |\omega_n - \omega_c| \int_0^t F_n \left[|\omega_n - \omega_c| (t - \tau) \right] + \cos \omega_c (t - \tau) + h(\tau) d\tau.$$
(2)

При замене F_в на F₀ и о_в = 0 выражение (2) характеризует движение при взаимодействии с неподвижным дефектом.

Интеграл свертки в области Фурье-изображений (спектрон) может быть представлен произведением снектров [2], т. е. спектр вибрании по оси x равен спектру спроектированной на эту ось силы, умноженному на передаточную функцию $W(j_{00})$. Учитывая пинейность Фурье-преобразования и линейность системы, этот вывод не изменится при рассмотрении воздействия всех полюсов.

Однако при учете протяженности лефектов и полюсов (φ_n , φ_n , φ_c) сцектры спроектированного на оси x, у взаимодействия $F_n = F_c$ (или $F_n = F_c$) суммированием (интегрированием) только во временной области получить не улается, приходится рассматривать бесконечные суммы спектров последовательностей импульсов, представляющих собой кусочно-непрерывные, обычно почти-периодические функции вречени. Поэтому приходится вычислять снектры в два этана: вначале интегрированием в пространстве для неизменного t находятся функции $F_y(t)$, а затем их Фурье-преобразованием определяются спектры.

Рассмотрим первый этап. В комплексной форме

$$\overline{F}(t) = F_{x}(t) + jF_{y}(t) = \int_{0}^{2\pi} F_{x}(\varphi, t) \cdot F_{y}(\varphi, t) \cdot F_{x}(\varphi, t) \cdot \cos\varphi \cdot d\varphi -$$
$$- j\int_{0}^{2\pi} F_{x}(\varphi, t) \cdot F_{y}(\varphi, t) \cdot F_{y}(\varphi, t) \cdot \sin\varphi \cdot d\varphi.$$
(3)

Так как F_n и F_n определены только в пределах $0:2\pi$, то (3) не изменится при переходе к пределам 0:5 и. следовательно. (3) пред-

ставляет собой Лапласово (L-) преобразование произведения F_H F_cF_s при параметре s - j:

$$\overline{F}(t) = \int_{0}^{\infty} F_{\mathfrak{s}} F_{\mathfrak{s}} F_{\mathfrak{s}} e^{-F_{\mathfrak{s}}} d\mathfrak{s} = \int_{0}^{\infty} F_{\mathfrak{s}} F_{\mathfrak{s}} F_{\mathfrak{s}} e^{-\mathfrak{s}} d\mathfrak{s} \Big|_{\mathfrak{s}=1} = L(F_{\mathfrak{s}} F_{\mathfrak{s}} F_{\mathfrak{s}} F_{\mathfrak{s}})_{\mathfrak{s}=1}.$$
(4)

L-преобразонание произведения функций равно комплексной свертке их изображений [3]. Даже для характеристик дефектов простейшего вида двойной интеграл свертки в комплексной области получить в компактной форме не удается. Эта задача решается последовательным численным интегрированием на ЦВМ, а здесь для анализа упростим се

Будем рассматривать взаимодействие дефекта в виде полуволны спиусонды с системой сосредоточенных полюсов (рис 3. а). Такое

Рис. 3.

представление для шарикоподшинников в многополюсных машин достаточно хорошо согласуется с реальностью и позволяет, с другой стороны, применить эффективный аппарат дискретного (D-) преобразования Лапласа для смещенных решетчатых функций [1]. Выражая протяженность дефекта в долях (I 4, 2, 3) = радиан (рис. 3,6) и представляя начальные смещения как функции времени

$$p_{i0} = m_i t_i$$
 $q_{i0} = m_i t_i$

нолучаем (см. Приложение) зависимости, нозволяющие анализировать влияние протяженностей дефектов и числа полюсов на комплексный спектр F(t). Здесь еще раз подчеркием существенность последовательности операций: следует вначале осуществлять проектирование (3), (4) взаимодействий и далее рассматривать их спектральное разложение, а не производить спектральное разложение дефекта с носледующим проектированием взаимодействий спектральных составляющих дефекта с а. с. э. на координатные оси, что [4] приводит к существенно ниым результатам.

Для исподвижного дефекта получаем

$$\overline{F}_{n}(t) = \sum_{k=-\infty}^{\infty} C_{k} e^{-jk\omega_{k} \cdot Z_{k} \cdot t}, \qquad (5)$$

где комплексные амилитуды C_k определяются по (П.18). Таким образом, вектор $F_n(t)$ силового воздействия неподвижного дефекта

представляется в виде гармонического ряда эллипсов вибрации, большие полуоси которых равны

$$|C_{+k}| + |C_{-k}|,$$

и остальные параметры также однозначно характеризуются прямым С. k и инверсным С векторами на каждой из частот их вращения Z_e. Постоянная составляющая возденствия определяется неподвижным вектором C_o.

Для вращающегося дефекта разложение $F_{n}(t)$ можно было бы получить из выражения (П.14) с учетом (П. 7), однако проще и нагляднее силовое воздействие вращающегося дефекта представить как неподвижного во вращающейся со скоростью «в системе координат по рис. 1. т. е. вместо (5) записать

Таким образом, вектор $F_{n}(t)$ представляется набором векторов верхиих боковых частот ($kZ_{-}|\omega_{n} - \omega_{e}|$) с амилитудами прямых векторов IC и нижних боковых частот ($kZ_{-}|\omega_{n} - \omega_{e}| - \omega_{n}$) с амилигудами инверсных векторов $|C_{-k}|$, а также вектором на частоте врашения ротора ω_{n} с амилитудой постоянной составляющей воздействия $|C_{0}|$.

Здесь следует отмстить, что учет протяженности дефектов не вносит дополнительных частот в сцектр вибраний, найденный ранее из анализа воздействия сосредоточенных дефектов, но позволяет выявить соотно шения между амплитудами составляющих снектра применительно к задаче различения дефектов. Однако модель, учитывающая язаимодействие неподвижного в вращающегося протяженных дефектов, поэволяет обнаружить и некоторые повые частоты в спектре, например, центральные частоты $kZ_c \| \phi_n \| \phi_c \|$.

Принятая в анализе форма дефекта в виде полуволны сипусонды представляется наиболее общей: очевидно, что пользуясь изложенной п приложении методикой, аналогичные результаты могут быть получены и для других апироксимаций дефекта, например, прямоугольной, треусольноя, пилообразной формы.

Приложение

L-изображение одиночного дефекта F(?) (рис. 3,6) имеет янд:

$$f(s) = L(F(\varphi)) = L\left(\sin l\varphi + \sin l\left(\varphi - \frac{\pi}{l}\right)\right) = \frac{l}{s^2 + l^2} \left(1 - e^{-\frac{\pi}{l}}\right). (11.1)$$

Учет смещения на угол фис(фис) соответствует умножению выражения (П. 1) на е фися.

При дискретном Лаплясовом преобразовании лефекта

$$f^{*}(s) = D(F(n)) = \sum_{n=0}^{\infty} F(n) e^{-sn}$$
 (11.2)

номера отсчетов (n = 0, 1, 2, 3, ...)

$$n = \frac{\varphi}{2\pi} Z_c = \frac{\varphi}{\omega_c} \tag{I1.3}$$

где = 2= частота (или период повторения) решетчатой функции, ссли номера отсчетов и считать безразмерным дискрет-

HUM BREMEHEM (T. e. $\varphi = m_c n = m_c t$).

Для того, чтобы (П.2) соответствовало F(t) по (4), необходимо по-прежнему умножать F на $e^{-i\varphi}$, г. е. в (П.2) брать $s = j\omega_c$ [вместо $s = j \oplus (4)$]. "Частога" лефекта соответственно будет:

$$\overline{\omega} = l \overline{\omega}_{e} = 2 \pi \frac{1}{Z_{e}}$$
 (r. e. $\sin l \omega = \sin \omega n$). (П.4)

Смещения в безразмерной форме выразятся следующим образом: — начальное смещение дефекта

$$s_{\overline{\gamma}_0} = j_{\overline{\gamma}_0} = j_{\overline{\omega}_0} \lambda \,. \tag{[1.5]}$$

гле для неподвижного дефекта

$$\lambda_{\rm H} = \frac{2m}{\omega_{\rm c}} - \frac{2m}{2\pi} Z_{\rm c}, \qquad (\Pi.6)$$

а для вращающегося лефекта

$$\mu_{\rm B} = \frac{\gamma_{\rm B0}}{\sigma_{\rm c}} \qquad \frac{1}{2\pi} \tag{(1.7)}$$

-смещение а. с. э. (решетчатой функции)

$$S\varphi_{co} = f_{Pos} = f_{Pos}, \qquad (11.8)$$

the
$$\varepsilon = \frac{\omega_c t}{\overline{\omega}_c} = \frac{\omega_c Z_c}{2\pi} t < 1$$
 (П.9)

(т. к. взлимодействие новторяется с периодом we);

смещение, обеспечивающее переход от синусонды к одиночному импульсу (FL1)

$$\frac{\pi}{1}s = \frac{\pi}{1}j = j\overline{\omega}_{c^{2}}, \qquad (\Pi, 10)$$

где
$$\gamma = \frac{Z_e}{2I}$$
. (П.11)

Для нерехода от L-изображения (П.1) к D-изображению сме-

16

шенной решетчатой функции [1] вместо (П.2) следует записать

$$f^*(s, e) = \sum_{n=0}^{\infty} F(n + e) e^{-sn}$$
. (17.12)

Однако искомое в соответствии с (4) выражение

$$F(t) = \sum_{n=0}^{\infty} F(n+\varepsilon) e^{-s(n+\varepsilon)} \Big|_{s=j\omega_c} = e^{-s\varepsilon} f^*(s,\varepsilon) \Big|_{s=j\omega_c}, \quad (\Pi.13)$$

т. е. *D*-изображение дефекта, следует умножать на оператор сдвига e^{-n} , поскольку $\tilde{F}(t)$ определено в неподвижной, а не поворачиваемой вместе с решеткой [1] системе координат.

Пользуясь правилами и таблицами [1] прямого *D*-преобразования, из (П.13) с учетом (П.1) и (П.4)--(П.11) получаем

$$\overline{F}(t) = \overline{F}_{1} + \overline{F}_{2}, \qquad (11.14)$$

$$F_{I} = \begin{cases} e^{-j\overline{w}}, \frac{\sin\omega(1+\varepsilon-(\iota-|\iota|))+e^{-j\overline{w}}\sin\omega((\lambda-|\iota|)-\varepsilon)}{-2e^{jw}\cos\omega+1}, e^{-j\overline{w}(\iota-1)} \\ \frac{e^{j\overline{w}}\cos\omega+1}{\sin\omega(\varepsilon-(\iota-|\iota|))} \sin\omega(1-\varepsilon-(\lambda-|\iota|))} \\ e^{2jw}e^{-2e^{jw}e}\cos\omega+1} \\ \frac{\cos\omega+1}{\sin\omega(\varepsilon-(\iota-|\iota|))} \\ \frac{e^{2jw}e^{-2e^{jw}e}\cos\omega+1}}{\sin\omega(\varepsilon-(\iota-|\iota|))} \end{cases}$$

 $\tilde{F}_{n} = \vec{F}_{1} |, \qquad (\Pi.16)$

знаком [] обозначается целая часть числа.

F(t) изменяется периодически при изменении ε от 0 до 1. повтому для комплексных коэффициентов C_k рядя Фурье [3] в принятой во рис. 1 системе координат можно записать:

$$C_{k} = \int_{0}^{1} \overline{F}(z) e^{jk2zz} dz$$

$$= \int_{0}^{\lambda_{+}v - [\lambda + v]} \int_{0}^{\lambda_{+}v - [\lambda + v]} \int_{0}^{\lambda_{+}v - [\lambda + v]} \int_{0}^{\overline{F}_{2}(z)} \overline{F}_{2}(z) e^{jk2zz} dz$$

$$= \int_{0}^{1} \overline{F}_{1}(z) e^{jk2zz} dz + \int_{0}^{\lambda_{+}v - [\lambda + v]} \int_{0}^{\overline{F}_{2}(z)} \overline{F}_{2}(z) e^{jk2zz} dz.$$
(f7.17)

После интегрирования и подстановок (П.3), (П.4), (П.6) и (П.11) для неподвижного дефекта окончательно получаем:

$$C_k = \frac{lZ_k}{\pi [l^2 - (kZ_k - 1)^2]} \cos \frac{\pi (kZ_k - 1)}{2l} e^{\beta kZ_k - 1 (\lambda \gamma_{an} + \frac{\pi}{2l})}, \quad (\Pi_{-}18)$$

При возникновении неопределенностей типа (например, при *t* 1 и *k*=0) следует применять обычные методы их раскрытия.

Поступило 20. 11. 1972.

2. TH, N 3

зи, и. врадищь, ч. и. эногогланы, п. 1. бильзые

ԱՊԱՍԻսԽՐՈՆ ԷԼԵԿՏՐԱՇԱՐԺԻՉԻ ՎԻՐՐԱՑԻԱՅԻ ԾՈԴԵԼ

Ամփոփում

Գիտված է ապասինկորն էլեկտրաշարժիչի վիթրացիայի սպեկտրը, որն առաջանում է դնդիկավոր առանցքակալների և «սոտոր-գաշտ-ստատոր» սիստեսի Թերուքիանների պատ առով։ Գիթառելով էապլասի գիսկրետ վերափոխումները, բացա`ալտված է սպեկտրի (վիբրացիայի էլիպսի չարմոնիկ շար բի) կախումը Թերության պարամեարներից։

ЈІ И Т Е Р А Т У Р А

- 2. Харкевич А. А. Спектры в анялиз. Физматтиз, 1962.
- Леч Г. Руководство к практическому применению преобразования Лапласа Изд-во «Наука», 1965.
- 4 Писарчик Р. И., Харлилов С. А. Спектральным энализ реакций разнальноупорного шарикового подшилника, обусловленных лефектами колен и шариков. Изв. АН СССР. Механика твердого тела», 1971. № 1.