ЛИТЕРАТУРА

- Могедия: станистической сминириче на данных, РТМ44 в2. Изд. Кочитотя стандиртов, мер и илходотсяльных приворов при Совет: Министров СССР, М., 1966.
- Ним. и. Н. А. Вероксическим динамического расчета машинострояи нал клиструсций, изд. 1000 инст. М., 1967.
- Гредия И. Г. Рызкий И. б. т. уле иссер с в. сумм. разов и произведенов. Физматеям, 1962.

г. м. асриян-

КОЛЕБАНИЛ ВАЛА С РАСПРЕДЕЛЕННОЙ МАССОЙ В КРУГОВОМ МАГНИТНОМ ПОЛЕ С УЧЕТОМ СВЯЗИ С ДВИГАТЕЛЕМ И ГАССЕЛНИЯ ЭНЕРГИИ В МАТЕРИАЛЕ

Рассмотрим сердечние с распрадаления по дляне массовыяя. упругями и маснитными параметр ми.

Выражения для компонентов сил магнитного притяжения согласно. [1] будут:

$$P = \frac{RB^{2}}{44} \frac{Rm}{cM^{2}} = \frac{1}{2} \left(\frac{B}{5000}\right)^{2} \frac{RI}{cM^{2}}$$
(1)

. Тая простоты я (1) принях, что распределение магнитной индукция не занасит от продольной координаты S_i а также от γ_i т. е. $E(s_i) = E$ const.

Исслиями колмания прашающегося тердоченка с потонной массой и, аженного в середные примото изгибная жесткость которого "Л. Інебаланс миссы с плечника относить и оточки прикрепления сера читол к с у приласнитьстся чены рисситетом г. Буден предвольства, что точка приложения размосдействующей магнитных сил и жести сердечника соннадают. Ун угое и систерезисное отклочения от закона і уха при изгланих колебана учитынать согласно [1]. Ілф еренц отыс нима колебана имагнитной колебания круглого точки с с слагияла но раоп ложеннам налом и магнитном поле занищутся в виде:

$$\frac{\partial^2}{\partial s^2} \left[El \frac{\partial^2 x}{\partial s^2} \right] = m \frac{\partial^2 x}{\partial t^2} = P_X - s \frac{\partial^2}{\partial s^3} \left[El (k + ll^3) \left(\frac{\partial^2 x}{\partial s^4} \right)^n \right] = sq \cos \gamma_s$$

$$\frac{\partial^3}{\partial s^2} \left[El \frac{\partial^3 g}{\partial s^2} \right] + m \frac{\partial^3 g}{\partial t^2} = Pg - s \frac{\partial^4}{\partial s^4} \left[El (k - ll^3) \left(\frac{\partial^3 g}{\partial s^4} \right)^l \right] = sq \sin s$$

$$\frac{\partial \varphi}{\partial t} = h(\varphi) + \varepsilon q \left(x \sin \varphi - y \cos \varphi\right) - E I(y^{(t)} - x^{(t)}), \qquad (2)$$

где с-мялый положительный параметр, указывающий на то, что соответствующие члены системы (2) малы. Первые два ураинения системы (2) представляют движение центра массы сердечника, в последнее ураввение является ураннением моментов относительно точки O₂ (рис. 1).

Решение перных днух уравневн**й системы (2) будем искать и** виде

 $\mathbf{x} = \int (\mathbf{s}) \, \mathbf{a}_{\mathbf{z}} \cos \mathbf{s} \tag{3}$

$$y = f(s) a_{\gamma} \cos (4)$$

гле $\varphi_x = \varphi - b_x$; $b_x = \varphi + b_y$; f(s) - функция прогиба, представляющая собой решение невозмущенного уравнения, т. е. из первых двух уравнения системы (2) при = 0 соответствующих граничных условиях. Для условий шарнирного захрепления

$$f(s) = \sin \frac{\pi n}{s} s. \tag{5}$$

Анплитуда а и фаза должны быть определены из следующей системы дифференциальных уравнений:

$$\frac{da}{dt} = \varepsilon A_1(a)$$

$$\frac{dS}{dt} = \omega - \varepsilon - \varepsilon B_1(a)$$
(6)

Для решения задачи в периом приближении пужно знать A, и B₁, которые определяются формулами [3]:

$$A_{1}(\omega) = -\frac{1}{2\pi M \omega_{0}} \int_{0}^{l} \int_{0}^{2\pi} Q\left(\sin\frac{\pi n}{l} - s\right) \sin \frac{\omega}{2} d\frac{\omega}{2} ds;$$

$$B_{1}(\omega) = -\frac{1}{2\pi M \omega} \int_{0}^{l} \int_{0}^{2\pi} Q\left(\sin\frac{\pi n}{l} - s\right) \cos \frac{\omega}{2} d\frac{\omega}{2} ds;$$

$$M = \int_{0}^{1} m \left(\sin\frac{\pi n}{l} - s\right) ds,$$
(7)

где О функция рассеяния энергии после лод тавления решения в первом приближении (5).

$$Q = N\left\{\left[-\left(\frac{\pi n}{l}\right)^{2} \sin \frac{\pi n}{l} \operatorname{scos}\left(\varphi + \theta\right)\right]^{2} \times \left[\left(\frac{\pi n}{l}\right)^{4} \sin \frac{\pi n}{n} \operatorname{scos}\left(\varphi + \theta\right)\right]^{2} + 2\left[-\left(\frac{\pi n}{l}\right)^{2} \sin \frac{\pi n}{l} \operatorname{scos}\left(\varphi + \theta\right)\right] + \left[-\left(\frac{\pi n}{l}\right)^{2} \sin \frac{\pi n}{l} \operatorname{scos}\left(\varphi + \theta\right)\right]^{2}\right\},$$
(8)

Здесь $N = 3Elj(k + li^2); \quad j = l \left[\frac{3}{m+3} \left(\frac{h}{2} \right)^m \right]; \quad h = высота (диа-$

метр) сечения стержия; m четное целое число; k, l коэффициенты миновенного и гистерезисного отклонений от закона. Гука; l множитель сдвига фаз, произнодищий изменение фазы на =2 в гистерезисном отклонении (считаем втот угол незаписамым от амплитуд деформации).

Перейлем к расчету выпужленных колебаний.

Частное решение перных двух уравнений системы (2) с правой частью, п первом приближении, пыражается формулами (3), (4) и (5). Амплитулы а и угол сдвига фаз в определяются из уравнений (9) согласно [3]:

$$\frac{da}{dt} = A_1(a) - \frac{A}{(\omega - \sin \theta)}$$

$$\frac{d\theta}{dt} = (\omega - \frac{1}{2}) + B_1(a) - \frac{A}{aM(\omega - \frac{1}{2})} \cos \theta; \qquad (9)$$

$$A = \int q(s) f(s) ds,$$

где q(s)- интенсивность нозмущающей нагрузки. Коэффициенты $A_1(a)$, $B_1(a)$ уравнений первого приближения (9) вычисляются по формуле (7), если задава функция рассеяния элергии Уравнение моментов из (2) с учетом (31 и (4) после несложных выкладок приводится к виду:

$$\frac{dz}{dl} = i\left(z\right) - \left[a\cos\left(z-b\right)\sin z - a\cos\left(z-b\right)\cos\left(z-b\right)\right]$$

$$\left[iq\left(\sin\frac{\pi n}{l}s\right) - El\left(\frac{\pi n}{l}s\right)\sin\frac{\pi n}{l}s\right]$$
(10)

Если влести допущение, что в течение периода коле аний момент привода мало отличается от момента сил сопротивления, т. с. разность L (?) q - мала, то можно также считыть проп ициональной малому нараметру, а - полагать медленно изменяющенся функцией времени. Координату э можно рассматрявать как квазициклическую и усреднить по ней уравнение (10), которое окончательно примет вид:

$$\frac{d}{dt} = (10) - \frac{a}{2}\sin \theta - \frac{a}{2}\cos \theta.$$
(11)

Уравнения (9) н (11) образуют систему, экцивалентной системе (2), в величны а. 6. в общем случае определяются как интегралы втих уравнений.

Далее будем различать следующие дна типа рожниов днижения изучаемой системы режимы стационарного движения и рожникы нестационарного движения.

Режимы стационарного днижения характеризуются тем, что они протекают при постоянных значениях неличина a, b, -. В режимах нестационарного динжения пеличины a, b, - могут изменяться и зависимости от - или b.

В соответствии с таким определением в стационарных режных динжения должно быть

$$\frac{d}{dt} = 0, \quad \frac{da}{dt} = 0, \quad (12)$$

Тогда, согласно (9), (11) и (12), получим:

$$A_{1}(\alpha) = \frac{A}{(\alpha - 1)M} = 0,$$

$$(13)$$

$$(-1) = \frac{A}{2} \sin \theta - \frac{A}{2} \cos \theta = 0.$$

Поэтому значения *a*, *b*, - при стационарных режимах движения определяются как кории системы (13). Отсюда находим:

$$\frac{2}{\omega^{2}} = 1 - \frac{A}{aM\omega^{2}} \left[\cos \theta - \frac{B_{1}(a)}{A_{1}(a)} \sin \theta \right]$$
(14)

Интегрирование (13) выполнено при начальных значениях a_0 , θ_0 и σ_0 , соотнетствующих станноварному режиму длижения в точке D, а параметры системы имеют следующие значения:

$$r = 2 \cdot 10^{-2} \text{ mm}; \ k = 0.8 \frac{\kappa \Gamma \cdot ce\kappa}{cm} = 184 \frac{1}{ce\kappa};$$

$$m = 0.7 \frac{\kappa \Gamma \cdot ce\kappa^{2}}{cm} : I = 0.32 \kappa \Gamma m \cdot ce\kappa^{2}; \ a = 0.12 \text{ mm};$$

$$b = 84; \ I = 0.28 \frac{\kappa \Gamma \cdot ce\kappa}{cm} = 0.28 \frac{1}{ce\kappa};$$

Результаты интегрирования в виде графиков $\alpha(t)$ и z(t) предстанлены на рис. 2. Кривая 2 характеризует прохождение чероз первую критическую скорость, при этом система стремится к стационарному значению a = 0.2 мл и z = 212 m, соответствующему точке *B* на рис. 2.

Полученные результаты позволяют заключить, что нестационарные режимы движения систем с малой нелинейностью при прохождения через резонале им ют такие ж. специ/жические особенности изменения частоты, которые обнаруживаются у линейных систем. Представление о характере изменения амплитуды и частоты колебаний двют графики на рис. 2. а и о. Характеристика источника энергии L выбиралась так, чтобы избыточная мощность была минимальной, чтобы график L проходил через точку 7 (рис. 2, а).

Величина углового ускорения сильно илменяется и процессе похождежил системы через область резонанся. Изменение углового скорения тесно саязахо с изменением амплитулы а с унеличением а пеньшается $\frac{d}{dt}$ и наоборот. В резонанской зове d аринимает квое наименьшее значение при и ксимольном значения а точка 7 на рис. 2). Однако, так как рассмитринаемая система имеет мягкую характеристику нелян йности, то при прохождении указ иных систем через резонанс необходимо больше времени, чем для других систем.

ЕО ВНИИЭМ

Hacryonas 29.X.1970.

ЛИЧЕРАТУРА

 Полняк Э. Кох блови влашиновся отдольного сордечника в монито и план, "Научные докумды высшей таколы. Этогор и ханиях и автомотика". — 1 1958.

- Восиленко Н. В. Зави наче в папряжением и деформацией и реальных изотронных толох. В ки, "Рассевинс внертии при колебаниях упругих систем". Изд. АН УССР, Кнес. 1966.
- 3. Василенко Н. В. К. т. т. велобаний с учето чторы. В вн. .Расселние «пергин при колебании систем". Илд. АН УССР. Киев. 1963.