СТРОИТЕЛЬНАЯ МЕХАНИКА

т. А. гороян. Э. Е. ХАЧИЯН

АНАЛИЗ РЕАКЦИЙ МНОГОЭТАЖНЫХ КАРКАСНЫХ ЗДАНИЙ НА СЕЙСМИЧЕСКИЕ ВОЗДЕЙСТВИЯ ПО АКСЕЛЕРОГРАММАМ СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ

Спектральный метод расчета сооружений на сейсмические ноядействия дает удовлетворительные результизы знизь для систем с одной стененью вободы, ибо в случае системы со многими стененими свободы вояникает рид затрудяений при новытке учета наложения высших форм колебаний. Точный учет влияния высших форм колебляки на воличниу сейсмической нагрумки затрудияется, главным образом, из-за певозможности математического описания закона колебания почны при землетрисениих. Преодолеть эти затруднения можно линь применением ЭВМ, позноляющей при заданной опселерограмме землетряесния производить численное интегрирование выражения сейсмической нагрузки и определять максимальные значения Этой нагрузки с учетом фазовых отклонений всех се составляющих.

В статье дается способ вычисления *реплиий* многоэтажных зданий на сейсияческие воздействия с непользованием акослерограмм зомлетрясский и применением ЭВМ и ва конкрстима примерях 10-этажных каркасных зданий внализируется отвосительное влияние различных форм колебаний и рассеяяия энергии на величник сейсинческих нагрузок.

 Постановка задачи. Для систем с л степенями свободы сейсмическая нагрузка, развинаемая массой m_k, сосредоточенной и уроние перекрытия k-го атажа, по q формам нормальных колебания предстанляется и пиде ряда [1]

$$S_{1} = m_{k} \sum_{t=1}^{q} (T_{t}, \gamma, t), \quad (k = 1, 2, \cdots, n)$$
(1)

Здесь (*T_r*, *r*, *t*) приведенное сейсмическое ускорение, определяемое выражением [2]:

$$=_{r} \left(T_{r_{1}} | \tau_{e}(t) - \frac{2\pi}{T_{e}} \right)^{r} y_{0}(z) e^{-\frac{2\pi}{T_{e}} \left(t - 1 \right) d^{2}} \qquad (2)$$

где у (1) — закон колебания почвы (акселерограмма); то коэффициент внутреннего трения; Т. период г-ой формы свободных колебаний.

Под репкушен подразумовается "реалирование" сооружения на задачные вкощные воздействия (response).

Отдельные слагаемые ряда (1), будучи зависимыми от закона колебания почвы, жесткостей и масс сооружения, а также от характеристик затухания, достигают своих максимальных значений в различные моженты времени.

Разделив акселерограмму на $t_p \Delta t$ ранных частей (где длина отрезка записи, содержащего наибольшие амплитуды ускорений; Δt интервал времени) и произведя ее табулирование, задача вычисления реакций многоэтажных зданий снедется к следующим операциям:

а) численному интегрированию выражения (2) при фиксированных значениях *T_r* и *γ* и таблично заданной акселерограмме с целью определения величин :- (*T_r*, *γ*, *l*) по времени и отбору их максимальных значений;

б) определению величие поэтажных сейсмических нагрузок и пер ререзывающих сил по отдельным формам колебаний;

в) определению величии поэтажных сейсмических нагрузок и перезывающих сил с учетом наложения первых нескольких форм колебаний и отбору их максимальных значений, т. е. к отысканню:

$$\max \left| \sum_{r=1}^{q} S_{r,r} \right| (3); \quad \max |Q_{t}| = \max \left| \sum_{l=k}^{n} \sum_{r=1}^{q} S_{l,r} \right|$$

$$k = 1, 2 \qquad n \qquad (4)$$

Вынося из-под знака интеграла, входящего в (2), функции, зависящие от его верхнего предела, будем иметь:

$$z_{r}(T_{r},\gamma,t) = \frac{2\pi}{T_{r}} e^{-\frac{2\pi}{T_{r}}t} \left[\sin\frac{2\pi}{T_{r}} t \int_{0}^{t} y_{0}^{*}(\xi) e^{\frac{2\pi}{T_{r}}\xi} \cos\frac{2\pi}{T_{r}} \xi d\xi - \cos\frac{2\pi}{T_{r}} t \int_{0}^{t} y_{0}^{*}(\xi) e^{\frac{2\pi}{T_{r}}\xi} \sin\frac{2\pi}{T_{r}} \xi d\xi \right].$$
(5)

Поскольку в (5) подынтегральные функции не зависят от верхнего предела интеграла, то, обозначая через значения аргум-вта, при которых функция () задана таблично ($i = 1, 2, \dots, t_{p_i} - t$), определенный интеграл можно заменить суммой интегралов с пределами t_{i-1} и t_i ($t_0 = 0; t_i = t_{i-1} - \Delta t$), т. е.

$$\pi_{t}(T_{t},\gamma_{t},t) = \frac{2\pi}{T_{t}} e^{-\frac{12\pi}{T_{t}}t} \left[\sin\frac{2\pi}{T_{t}} t \sum_{l=1}^{t_{p}/M} \int_{t_{l-1}}^{t_{l}} y_{0}^{*}(\xi) e^{\frac{2\pi}{T_{t}}\xi} \cos\frac{2\pi}{T_{t}} \xi d\xi - \cos\frac{2\pi}{T_{t}} \xi d\xi \right] + \cos\frac{2\pi}{T_{t}} t \sum_{l=1}^{t_{p}/M} \int_{t_{l-1}}^{t_{l}} y_{0}^{*}(\xi) e^{\frac{2\pi}{T_{t}}\xi} \sin\frac{2\pi}{T_{t}} \xi d\xi \right].$$
(6)

Используя соотношение

$$\int_{0}^{t_{l}} f_{j} d\xi = \int_{t_{l-1}}^{t} f_{l} d\xi = \sum_{i=1}^{t_{l-1}} \int_{t_{l-1}}^{t_{l-1}} f_{i} d\xi, \quad (j = 1, 2)$$
(7)

где приняты обозначения:

$$f_{1} = y_{0}(z)e^{\frac{2\pi}{T_{r}}z} \cos \frac{2\pi}{T_{r}}z; \quad f_{z} = y_{0}(z)e^{\frac{2\pi}{T_{r}}} \sin \frac{2\pi}{T_{r}}z,$$

получаем, что для вычисления интеграла (7) в промежутке $[0, t_i]$ достаточно вычислить его значения в интервале $[t_{i-1}, t_i]$ и полученное прибавить к сумме

$$\sum_{l=2}^{t_{f} (M)} \int_{t_{f} (2)}^{M-1} f_{f} (T_{r}, \gamma_{r}; i) di. \quad (j = 1, 2)$$

Вычисление интегралов в интервалах $[t_{i-1}]$ производим по формуле Симисона с точностью до 10. При этом в не табличных точках значения $y_{i-1}(z)$ находим методом интерполяции. Максимальные значения выражений (2), (3) и (4) и промежутке [0, t_{i-1} выделяем сравнением результатов, полученных для точки t_{i-1} со значениями тех же величии, полученных в промежутке [0, t_{i-1}]. Блок-схема программы вычислений, составленная для ЭВМ "Раздан 2", приведена на рис. 1.

Для анализа реакций использованы акселерограммы четырах калифорнийских землетрясений интенсивностью в 7 8 баллов [3], основные характеристики которых принедены в табл. 1.

Украническихи запьятойский

Таблица Г

Augustephethan Stratephethan										
Нонсра акселери грамм Галлиность		รู้เฉิรรณ 300. ภะราวมระคมเท	Станция	ใวละจะรอบเมพ.จ บรุชาหญะห รุกก. พ.พ	Пернод.	Уткорелие. Доли <i>К</i>	Состанан-			
1 2 3 4	7 8 8 7	3.X 1911 9.111 1949 21 X111956 12.1 1951	Ferndalu Hollister Eureka Taft	24 22 7 42	0,38 0,32 0,40 0,20	0.078 0.120 0.225 0.097	$\Gamma = 60 \ \Gamma = 21 \ \Gamma = 10 \ \Gamma = 70$			

При анализе реакций и качестие исходных данных использованы нараметры 10-этажного железобетонного каркасного здания, ныстроенного в г. Еренане (жилдом Армхимпромстроя). жесткости всех этажей которого равны между собой ($a_1 = a_2 = -a_{10} = a$). В предположении абсолютной жесткости ригелей $a = 1104 \ T \ cm$ и поперечном направлении здания. Массы, сосредоточенные и уровнях перекрытий имеют следующие величивы: m₁ m m₄ 0,520 m·сек² см; m₁₀ = 0,627 m·сек² см.

2. Сопоставление реакций зданий с "гибким" ("жестким") первым этажом. В работе [4] нами: было показано, что при одной и той же этажности формы колебаний в сильной степени зависят от значения коэффициента жесткости первого этажа отношения жесткостей

Рис 1 Блок-слема программы вызыслевий

нервого и типового этажей с n, a. Для зыявления степени влияния изменения жесткости первого этажа на формирование сейсмической нагрузки, беря в основу параметры указанного 10-этажного элания и варьируя значеннямы 2, рассмотрены 7 вариантов, в том числе: 3 нарианта с "гибким" первым этажом (a < 1), 3 варианта с "жестким" первым этажом (a > 1). Варианту с a = 1 соответствует исходное здание.

Периоды первых трех тонов спободных колебаний рассматриваемых зданий в их поперечном ваправлении, вычисленные в предположении абсолютной жесткости ригелей рамного каркаса согласно [4], приведены в табл. 2. Таблада 2

	Периоды св	ободных кол	вбалий, са	
Бариакты	Тона	11 гона	Ш тона	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,347 1,101 0,965 0,910 0,883 0,865 0,855	0.387 0.356 0.328 0.307 0.298 0.292 0.292 0.287	0,213 0,206 0,196 0,187 0,187 0,181 0,179 0,176	

Для всех 7 вариантов по приведенной в п. 1 методике вычислены максимальные эначения поэтажных сейсмических нагрузок и перерезывающих сил как по отдельным формам пормальных колебаний, так и с учетом наложения первых трех форм. При этом, учитывая отсутствие реальных данных о затуханиях колебаний многоэтажных зданий, для исех форм пеличина коэффициента внутренчего трения предположительно принята 0.12. Поэтажные значения коэффициентов форм колебаний час взяты по [5]. Максимальные значения ускорения (*T.*, *t*) по каждой форме колебаний приведены в табл. 3. В табл. 4 приведены максимальные значения перерезывающих сил 0 на все здание.

-	1	~					- 7
1	23	ú	18	22	E.	12	3
	-	~	_	-	2.82		

Вариенты (Ворны ко-	N RO-	тах (т,) в см сек- при акселерогразмах				H N	ы кі -	тах _г в са сехт при акселерограммаз			
	(Ворм асбани	Nr 1	38.2	N 3	Nr 4	Unpite	форм сбалт	N# 1	N <u>€</u> 2	No 3	N 4
,	r	18	44	164	32	5	1	36	129	182	50
	11	173	289	729	96		l ii	205	366	708	143
	III	203	239	601	259		111	282	249	474	159
2	1	22	75	97	36	6	1	39	129	186	53
	11	212	400	743	138		11	213	320	707	154
	111	249	241	579	239		111	283	248	466	154
3	1	28	113	148	- 41	7	1	40	129	190	54
	[]	168	476	730	1 156		n	215	306	704	100
	111	244	253	562	213		111	270	217	456	146
4	(1	32	126	174	45		I		1		
	11	203	428	710	138						
	111	258	254	521	177						

Таблици 4

Максимальные значения перерезывающих сил Qk (в тоннах) по трем формам колебаний

	0	ределах	k ro ar	aza ny	ри значениях 2						
~	0,15	0,30	0,60	1,00	1.50	2,00	3,00				
		но аж	селерог	рамме	N5 1						
10 9 8 7 5 4 3 2 1	33 57 75 87 92 93 91 87 87 90	56 93 116 122 115 108 106 107 115 131	64 104 123 129 129 131 134 135 117 158	75 120 143 145 146 145 139 149 165 185	81 133 145 146 150 154 157 168 181	83 132 150 139 116 153 166 162 175 184	76 123 140 141 141 161 161 168 186 188				
		NO 80	cevenor	рамме	No 2						
10 9 7 6 5 1 3 2 1	47 84 116 132 158 170 179 198 215 228	85 151 208 251 273 287 309 336 369 395	136 236 327 399 446 465 473 491 526 558	155 274 375 450 495 510 511 509 528 547	155 273 371 444 488 505 507 506 522 533	152 267 363 433 477 498 501 504 524 531	145 256 318 117 462 484 493 501 516 520				
		11-0 6-11	envebut	PER MIN P	No 3	1	I				
10 9 8 7 6 5 4 3 2 1	132 232 316 381 427 457 478 478 492 506 535	208 355 458 506 504 484 467 513 525 630	257 431 538 568 552 581 640 668 799 893	262 437 542 639 678 632 726 762 784 838	252 485 604 711 751 724 739 774 806 845	276 445 656 768 811 788 749 794 832 865	291 511 638 803 851 814 752 810 853 878				
		HO AL	технров	рамые	No -4						
10 9 8 7 6 - 4 3 2 1	37 63 83 99 115 129 141 150 158 168	45 74 92 114 132 146 156 164 177 195	74 121 150 160 161 167 182 187 181 198	74 122 149 163 178 196 205 198 225 244	74 122 151 165 181 204 215 215 242 256	76 124 155 169 185 209 223 227 244 255	76 127 157 172 188 210 224 232 239 245				

По результатам вычислений построены эпюры перерезывающих сил по трем и отдельным формам колебаний. На рис. 2 приведены ати впюры при акселерограмме № 4.

Рис 2. Элюры максимальных эначения перерезывающих их при в сорирамые No. 4 (0.12)

Сопоставление реакции показало, что при "гибком" периом этаже (a < 1) величины сейсмических нагрузок и перерезывающих сил получаются значительно меньше, чем в случае раненства жесткостей всех этажей (д 1); это имерт често как по отдельным формам колебаний, так и с учетом наложения трех рорм. При этом, чем меньше а, тем больше это уменьшение, которое в свою очередь, зависит от спектрального состава акселерограммы. Так, при 2 = 0,30 уменьшение перерезывающей силы по трем формам в пределах периого этажа для акселерограмм № 1 -- 4 соотнетственно составляет: 28, 28, 25 и 20° о, а при х 0,15 51, 58, 36 и 31° о Аналогичная картина имеет место и в пределах остальных этажей. Такое же уменьшение имеет место и для максимумов изгибающих моментов и стоиках карчаса, поскольку при абсолютно жестких рагелях из значения отличаются от перерезывающих сил постоянным множителем. Это указывает на то, что при рассмотренных землетряссниях "гибкий" перный атаж при атажности л 10 может уменьшить пррект сейсмического воздействия и среднем на полбялла. С увеличением этажности уменьшится илиниие "гибкого" первого этажа и, по-видимому, исцелесообразно строить здания с "гибким" першых этажом высотой более 10 12 этажей. Для уменьшевия эффекта сейсмического воздействия на здания высотой более 10 12 этажей, видимо, целезообразнее будет придать гибкость

не только перному этажу, но и иторому. Что касается зданий с "жестким" первым этажом ($\alpha > 1$), то, как показало сопоставление реакций, "ожесточение" перного этажа оказало столь пезначительное влияние на величины перерезывающих сил, что им можно пренебречь. Следует отметить, что эти результаты получены для рассмотренных, в оснояном короткопериодных, землетряссний. Однако при спектральных составах землетрясений, отличных от рассмотренных, возможно, что картина будет иная.

3. Сопоставление реакции при различных затуханиях. В предыдущем параграфе величина коэффициента внутрепнего трения предположительно была принята равной γ 0,12. Возможно, что затухание колебаний каркасных аданий может протекать интенсивнее, чем было предположено. Поэтому, для выявления степени илияния различных затуханий на величины сейсмических нагрузок и перерезывающих сил, проведено сопостанление реакций рассмотренного в п. 2 ядания с равнымя между собой жесткостями цсех этажей (вариант 4, з 1) при различных значениях γ. С этой целью по акселерограммам № 1 4 иычислены реакции атого здания с учетом паложения трех форм колебаний при γ 0,16 и γ 0,20. Результаты выячислений сведены в табл. 5. На рис. 3 приведены эпюры перерезывающих сил при γ 0,16 и γ 0.20 в долях перерезывающих сил при γ 0,12.

Таблица 5

Этан	M	Максимальные значения перерезывающих сил () (в тоянах) по трем формам колебавий									
	по аксеме № 1 цри ях	арограмме мачени	ио акселерограмме У 2 при аначени их 7		но акселерогрямме № 3 при явачени- их ;		по акселерограмы" № 4 при значени их ;				
	0,16	0,20	0,16	U,20	0,15	0,20	0,16	0,20			
x	66	60	129	111	231	205	68	61			
1X	106	95	230	198	388	346	112	101			
VIII	125	114	318	277	500	466	136	124			
VIE	130	120	387	311	593	553	150	136			
VI	130	126	433	387	630	589	163	150			
V	138	132	458	417	605	572	180	165			
IV	133	128	804	433	666	614	187	171			
111	142	135	476	415	697	645	182	168			
11	155	148	491	-159	764	735	197	173			
1	173	165	504	464	815	785	214	190			

Как видно из рис. 3, илияние различных значений ; на величным неререзывающих сил не очень заметно. Несмотря на различные законы колебаний почвы, полученные по четырем акселерограммам результаты мало отличаются один от другого. Почти двукратное увеличение затухания (; 0,12 0,20) приводит к снижению неличин перерезывающих сил всего на 10 $15^{\circ/}_{\circ}$; только в верхней трети здания это снижение составляет 20 $25^{\circ/}_{\circ}$. Последнее объясняется тем, что на верхних этажах зданий сейсмические нагрузки формируются, в основном,

10

за счет высших форм колебаний, влияние которых с увеличением затухания убынает.

Рис. 3. Энюры максимальных экачений перерезовающих сил при 9.16 и 0.20 в должа перерезовающих сил при 0.12

Таким образом, пропеденное сопоставление реакций показывает, что в каркасных яданиях сейсмические нагрузки не существенно зависят от величины коэффициента затухания. Следовательно, не целесообразно конструктичными приемами добиваться большого затухания в каркасных зданиях.

Арханский НИН стробнатериалов и сооружений

Поступило 251.1971.

S. U. HIPHSON, E. R. BURDSON,

ՍԵՅՈՄԻԿ ԱՉԳԵՅՈՒԹՅՈՒՆՆԵՐԻ, ԲԱՉՄԱՀԱՐԿ ԿԱՐԿԱՍԱՅԻՆ ՇՆՆՔԵՐԻ ՀԱԿԱՉԳԵՅՈՒԹՅՈՒՆԵՐԻ ՎԵՐՎՈՒԾՈՒԹՅՈՒՆ ԸՍՏ ՈՒԺԵՂ ԵՐԵՐԱՇԱՐԺՆԵՐԻ ԱԿՍԵԼԵՐՈԳՐԱՄՆԵՐԻ

Ամփոփում

Տրված է ըստ հրկրաչարժների ակսելերոգրաժների բաղժաճարկ չՀերե ճակազդեցությունների ճաչվարկման եղանակ էլեկտրոնային ճաչվիչ մերենայի օդտագործմամբ։ Հ-ծ բայլ ու գնության կալիֆորնիական չշրո երկրաչարմների ակսելերողումների օբատողործմամբ ճաշվարկվել են երկաթենտոնե 10-ճարկանի կարկասային է չենրերի ճակազդեցությունները և վերյուծության է ենթարկված քներդիայի գրման ու տատանումների բարձր ձևերի ճարաբերական աղդեցությունը սելունիկ բեռնվածրի ձևավորման վրա։

11

ЛИГЕРАТУРА

- Хачиян Э. Е. Некоторыс прикладиые задачи теории сейсмостойкости сооружений. Научные побщения АИСМ, вып. 3, Ерекан, 1963.
- 2. Назаров А. Г. Метод инженерного анализа сейсмических спл. Над. АН Ары ССР. Ереван, 1959.
- э. Медведен С. В. Инженерная сейсиология, Госстройиздах, 1962.
- 1 Гороян Т. А., Хачани Э. Е. К определению периодов и форм свойодных колебаний многозтажных кархаеных зданий. "Изнестия АН Арм. ССР (серия Т.Н.)", т. XXIII. № 5, 1970.
- Рекомендации по определению периодов и розм жолеблийй варкаеных здяний. Изд. АИСМ, Ереван, 1970.