измерительная техника

А. Г. ГУКАСЯН, М. А. КАРАПЕТЯН, В. С. СИМОНЯН

ПОГРЕШНОСТИ L-С ИЗМЕРИТЕЛЬНЫХ ЦЕПЕЙ

B [1—3] предложены дле измерительные цепи (рис. 1), которые в дальнейши для краткости будут назнаим L C-1 и L C-1! цепими. В указанных работах приведен квисстиенный яналих систематических методических посрешностей измереный при условии применения генератора со стабилизиропанным выходным напрежением фиксированной частоты. В настоящей статье изложены релультаты количественных пнализа методических погрешностей L-C цепей, выяванных препебрежением потери внергии в образцовой катушке и исстабильностью частоты генератора.

Фаза выходного напряжения U_{α} (рис. 1, α) без учета сопротивления r_0 при фиксированной частоте генератора равна:

$$\psi_z = \operatorname{arc} \operatorname{tg} \frac{x}{x} = \operatorname{arc} \operatorname{tg} (\operatorname{tg} \delta_x) - \delta_x,$$

т. е. углу потерь испытуемого образца. С учетом сопротивления r_0 и нестабильности частоты генератора фаза и модуль напряжения пределятся на выражении:

$$\psi_{2}' = \operatorname{arc} \ \operatorname{tg} \frac{\frac{a \ (1 - b)}{(1 + a^{2})(1 \pm b)}}{\frac{1}{m} \frac{1}{(1 + a^{2})(1 \pm b^{2})}}; \tag{2}$$

$$U_1 = \frac{mU_1}{\left[(1-m)(1+a^2) - m\frac{1-b}{1-b} \right]^2 + \left[(1-a^2)\tan a_x - am + \frac{b}{1+b} \right]^2}, (3)$$

где т C_0/C_x ; a=1 Q ; Q_{ko} добротность образцовой катушки; $b=\Delta f/f$.

Для вынода формул (2) и (3) принято, что при малых колебаниях частоты генератора $f=f_0=\Delta f\colon C_1$ и испытуемого образца остаются постоянными; сопротивления образцовых алементов изменяются согласно выражениям $x_1=x_0\pm\Delta x_1$ и $x_0=x_0-\Delta x_2$; имеют место равенства $\Delta x_1=bx_0-\Delta x_2$. Абсолютная погрешность измерения угла по-

терь ΔC испытуемого образца, вызванная эквивалентным активным совротивлением катушки r_0 и нестабильностью частоты генератора на Δf , определится разностью

$$\Delta \delta = \psi_2 - \delta_{x}. \tag{4}$$

С целью оценки частотной методической погрешности измерительной цепи нестабильность частоты примем равной $\pm 1\,^{\circ}/_{\circ}$, хотя, в тействительности, яеличина нестабильности частоты предопределяется типом использованного генератора. Результаты подсчета погрешностей Δr при $b=\pm 0.01$ и различных значениях m и α принедены в табл. 1; причем, верхине цифры соответствуют положительному значению b, яижние—отрицательному.

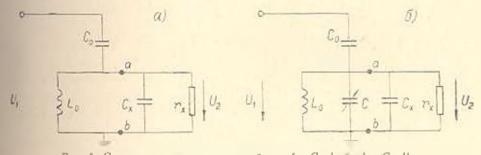


Рис. 1. Схемы явмерительных цепей: a-L-C-1; a-L-C-1!

При пользовании прибором с измерительной цепью L-C-1 искомая емкость испытуемого образца пересчитывается по формуле:

$$C = \frac{U_1 C_2}{U_2 V_1 + t g^2 \delta_3} \tag{5}$$

полученной при пренебрежении сопротивлением г, и фиксированной частоте /о. В действительности измеряется емкость

$$C_x = \frac{U_1}{U_2} \frac{C_0}{\sqrt{1 + tg^2 \psi_0^2}}$$
 (6)

Погрешность измерения емкости в процентах определяется из выражения:

$$\frac{Q_{1}}{Q_{2}} = \frac{C_{1} - C_{2}}{C_{1}} \cdot 100^{\circ} \cdot _{0} = \begin{bmatrix} U_{2} \\ U_{2} \end{bmatrix} \sqrt{\frac{1 \cdot \lg^{\circ} \psi_{2}}{1 + \lg^{\circ} \psi_{2}}} - 1 \cdot 100^{\circ} \cdot _{0}.$$
 (7)

Результаты подечета погрешностей $a_{i,j}$ вызнанных сопротивлением r_0 и нестабильностью частоты, при b=0.01 и различных значениях m и a приведены и табл. 1. Величины погрешностей, вызванных только нестабильностью частоты в идеализированной цепи $(r_0=0,a=0)$, приведены и последних четырех строках таблицы.

а	tg ð	m=0,01			m = 0, 1			m=1		
		0,1	1,0	10	0,1	1,0	10	_ 0,1	1,0	10
0,100 0,010 0,002	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} +3'\\ -3'20''\\ -0.010\\ -0.040\\ -12''\\ +25''\\ -0.020\\ +0.019\\ 0\\ +8'\\ -0.020\\ +0.020\\ +4''\\ -0.020\\ +4''\\ -0.020\\ +0.020\\ \end{array}$	$ \begin{vmatrix} +1'10'' \\ +1'20'' \\ -0,050 \\ -0,070 \\ -10'' \\ +30'' \\ -0,012 \\ +0,005 \\ -10'' \\ +4'' \\ -0,010 \\ +0,010 \\ -8'' \\ +20'' \\ -0,010 \\ +0,010 \end{vmatrix} $	$ \begin{vmatrix} -4'' \\ +4'' \\ -0,0200 \\ -0,0100 \\ +20'' \\ +4'' \\ -0,0100 \\ -0,0010 \\ -4'' \\ +20'' \\ -0,0010 \\ +0,0002 \\ -21'' \\ +5'' \\ -0,0002 \\ +0,0002 \\ +0,0002 \end{vmatrix} $	+30° +34'40″ -0.01 -0.40 +2'35″ +4″ -0.20 +0.19 0 +1'20″ -0.20 +0.20 -40″ +20° -0.20 +0.20 +0.20	+11'30" +14'50" -0,40 -0,60 -2' +5'10" -0,15 +0,05 -3' +3'40" -0,10 +0,09 -3'30" +2'30" -0,10 +0,10	-40° +39° -0,100 -0,100 -20° +39° -0,100 -0,010 -41° +39° -0,006 +0,001 -41° +39° -0,002 +0,002	+5°7′20″ +5°45′20″ -0,50 -4,00 +24′: +42″ -0,20 +1,90 -10″ +14″ -1,90 +2,00 -6′40″ +6′44″ -1,90 +2,00	+1°0′50° +3°2′ -4,45 -5,00 -18′30° +52′5° -2,50 +0,50 -47′40° +38′10° -1,08 +0,90 -30′ +34′40° -1,00 +1,00	-6' $+6'39''$ $-0,97$ $-1,00$ $-16'26''$ $+6'59''$ $-0,13$ $-0,10$ $-7'19''$ $-6'49''$ $-0,04$ $+0,01$ $-6'46''$ $+6'44''$ $-0,02$ $+0,02$

Для определения систематических методических погрешностей вмерений и C_n , обусловленных только пренебрежением сопротивления r_0 , необходимо в выражениях ψ_2 и U_2' подставить b=0 и воспользоваться формулами (4) и (7).

Рассмотрение таба. 1 принодит к выводу, что при m < 1 и а < 0.01 предложенная измерительная цень может быть с успехом применена для измерений угла потерь и емкостей, особенно, при малых добротностях испытуемых материалов.

Условие $a \ll 0.01$ удается осуществить при повышенных и яысоких частотах. При частоте 50 гг добротность L-C контура получается не лучше десяти. Из табл. 1 следует, что при этом должно быть соблюдено условие $m \ll 0.1$. Если питание схемы осуществить из дентрической сети, где частота колеблется только на $0.4\,^{\circ}/_{0}$, то ногрешности будут значительно меньше данных табл. 1.

Перейдем к анализу цепи L-C-11. Если емкости C и C_x объединить и одну $C_x=C+C_x$, то цепь рис. 1, δ совпадает с цепью рис. 1, α для случая tg $\delta_x=1$. Следовательно, величина $\Delta\delta$ может быть определена по выражению (4) при tg $\delta_x=1$ (см. табл. 1). Погрешность $\pm \Delta z$ приведет к ложной индикации фазы 45, тогда, как действительная фаза

$$\psi_2 = 45^{\circ} + 26.$$

При втом

$$\frac{x^2}{r_x^2} = \operatorname{tg}(45 - 2\delta). \tag{8}$$

Это приводит к погрешности измерения C_3 и r_4 . Так как неличина емкости C_4 при малой нестабильности частоты остается постояний, то погрешность измерения C_4 обусланаливается неточной настройкой переменной емкости C_4 . Следовательно, абсолютная погрешность измерения C_4 равияется абсолютной погрешности установления C_4 , C_4 е. C_4 и некомая емкость

$$C_{x} = C_{y} - C' = C_{3} \pm \Delta C_{3} - (C \pm \Delta C) = C_{3} - C$$
 (9)

определяется без погрешностей.

Для определения погрешности измерения r_{λ} воспользуемся формулой

$$U_2 = \frac{U_V x}{x + x^2 + x^2}.$$
 (10)

наятой на [3].

В условиях нестабильности частоты и при наличии сопротивления r_0 величины U_2 и сопротивлений, входящих в (10), изменяются. Совместным решением (8) и (10) находим формулу r_1 и отосительную вещность его измерения:

$$1 - \left\{ 1 - \frac{U_1 V_2}{U_2} - \frac{\operatorname{tg}(45^\circ \pm 2\delta)}{1 \cdot 1 - \operatorname{tg}^2(45^\circ \pm 2\delta)} \right\} \cdot 100^\circ l_0. \tag{11}$$

Результаты подсчета погрешностей измерения r_i приведены в табл. 2, причем, значения Δa взяты из табл. 1 (при a = 1).

			Таблица 2
a	m = 0,01	m =0,1	m 1
0,100	-0,0679 -0,0790	-0,681 -0,882	-3,879 -10,6906
0,010	+0.0300 -0.02599	+0.0971 -0.0994	-1,9957 2,0266
0,002	+0.0120	+0,1241 -0,007427	+0,3044 +2,1812
0	-1-0,0070 0,0210	-0,012388 -0,0353	$-0.0781 \\ +2.3812$

На основании формулы [3]

$$\operatorname{tg} \lambda_{x} = 1 + \beta = 1 + \frac{C}{C_{x}} \tag{12}$$

можно найти выражение для подсчета погрешностей измерения tg on При учете нестабильности частоты и сопротивления го тангено

при учете нестабильности частоты и сопротивления r_0 танге фазы вторичного напряжения можно записать следующих образом:

$$t_{\rm EV} = 1 + \frac{C - \Delta C}{C_{\rm T}}.\tag{13}$$

Следовательно, погрешность измерения $\operatorname{tg} \delta_{ij}$ определится из пыражения:

$$s_{\rm tg} z^{0}/_{0} = \frac{1g - 4g s_{\rm g}}{4g s_{\rm g}} 100^{\rm n}/_{0} = \frac{\Delta C}{C_{\rm p}} \cdot 100^{\rm m}_{0}. \tag{14}$$

Нетрудно убедиться, что (14) совпадает с (7), если в последне подставить $\operatorname{tg} A = 1$. Это значит, что результаты расчета погрешно стей измерения C_A схемой L - C - 1, принеденные в табл. I (в столб дах при $\operatorname{tg} A = 1$), являются также погрешностями измерения $\operatorname{tg} A$, схемой L - C - 1.

Вышеналоженное дает основание утперждать, что приборы, но пользующие предложенные нами L-C измерительные цепи, могут быто с успехом применены для измерения или контроля величии емкоств угла потерь диалектриков низкой добротности.

Еревонский полнтохнический институт им. К. Маркеа

Поступнае 24.11.1970.

1. Գ. գուտասան, Մ. Ս. Կարատուցան, Վ. Ս. Սիկքոնակն

L-C ՉԱՓԻՉ ՇՎԹԱՆԵՐԻ ՍԽԱԼԱՆՔՆԵՐԸ

Ամփոփում

հատարված է L—C չափիչ չղքաների մեքիողական սխալանջների բանակական անալեց, որոնք առաջանում են նմուշային կոձում էներդիայի կորուստները և գններատորի հաձախության անվայունությունն արհամարելիս։

JHTEPATYPA

- Карипетян М. А. Метод измерении амиостей кондеясаторов инзиой добротвости. Электричество*, № 8, 1968.
- Корппетин М. А., Симонян В. С., Гукасян А. Г. Метод пепрерывного измерении угла потерь конденсаторон. "Известия АН Арм. ССР (серия Т. Н.)". т. XXIII, № 1, 1970.
- Каравитин М. А., Симанин В. С. Изм-рение выхости и таигенса угля потерь дивлентриков с низкой добротностью. "Электричество", № 10, 1969.