СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ

В. А. МНАЦАКАНЯН

ОПЫТ ПРИМЕНЕНИЯ ТЕОРИИ РАСШИРЕННОГО ПОДОБИЯ К ИССЛЕДОВАНИЮ СЕЙСМОСТОЙКОСТИ КАМЕННЫХ КОНСТРУКЦИЙ

Изучению динамических свойств зданий и сооружений путем использования сейсмоварывных коли посвящей ряд работ. Однако, работ по изучению динамики сооружений с помощью моделей на сейсмовэрывное воздействие сравнительно мало. Между тем крайне целесообразво проведение экспериментальных исследонаний на моделях с использованием сейсмоварывного воздействия. В статье принедены результаты экспериментальных исследований моделей двух типов кирпичных трехэтажных жилых домов на сейсмоварынное воздействие, в основу которых легла теория расширенного подобия твердых деформируемых тел, разработанная А. Г. Назаровым [1].

Выбор кирпичного трехэтажного жилого дома в качестве объекта лля целей моделирования на сейсмоварывное воздействие был продиктован, исходя из следующих соображений: во-перных, массовым возведением таких зданий в районах 8-9 балльной сейсмичности, во-вторых, необходимостью сравнить работу моделей зданий с антисейсмическими мероприятиями и без них для оценки эффективности их применения.

Обеспечение условий расширенного подобия лля моделирования вирпичной кладки связано с большими трудностями при подборе модельного материала. Для каменной кладки, состоящей из различного рода материалов, обеспечение коэффициентов в и т весьма затруднительно. Более выгодным является случай расширенного подобия, когда ускорения для оригинала и модели ранны и имеют место большие перемещения при т = 1. Этот случай приближается к простому подобию [2] и для множителя подобия плотности имеет место условие i = 1/a. Тогда остальные множители подобия будут: для напряжений $\beta = 1$, для масс α^2 , для времени — $\xi = 1$ α , для модулей деформаций — 3 = 1, для погонной нагрузки а, для сосредоточенной нагрузки 25, для объемных сил — 1 2. Следопательно, деформационные свойства и напряженные состояния оригинала и модели одинаковы. При таком подходе несколько затрудняется подбор модельного матернала, деформационные свойства которого должны совпадать со свойствами материала оригинала, а плотность - отличаться в 1/2 раза.

Однако, в тех случаях, когда имеется возможность распределенную массу заменить дискретными массами, сосредоточенными на междуэтах ных перекрытиях, рассмотренные условия полобия становятся весьма удобными. Тогда необходимо для масс принять условие $m' = \alpha^2 m$ [2]. Удобство такого подхода заключается в том, что ускорения для оригинала и модели равны между собой и не требуются дополнительные безынерционные пригрузки. Такой случай расширенного подобия еще больше расширяет область применения простого подобия, соблюдая условие $\beta = \gamma = \delta = 1$, а педостаток веса компенсируя дополнительными сосредоточенными пригрузками. На основании вышеизложенного и произведен подбор модельного материала.

Выбор масштаба модели множителя подобия линейных размеров а, произведен, исходя из соображений максимального использования именшегося под рукой модельного материала силикатного кирпича строго стандартных размеров, а также соблюдения идентичности технологии кладки кирпичных степ модели и оригинала. При втом наиболее удобным является масштаб з = 0,625, моделирующий осповные несущие конструкции оригинала кирпичные стены, толщиной 40 см. Тогда и модели будем иметь толщину стен в один кирпич — 25 см. Такой масштаб удобен еще и тем, что создаются лучшие условия для проведения эксперимента: облегчается осущестнление и вознедение конструктивных элементов модели, а также установка регистрирующей аппаратуры и ее характерных точках. Поэтому в качестве модельного материала нами припят материал оригипала. Следовательно, для характерных неличин имеют место следующие условия подобия:

$$\alpha' = \alpha; \ \epsilon' = \epsilon; \ E' = E; \ m' = \alpha^2 m; \ W' = W.$$

Здесь і и з напряження; и є деформации; E' и E — модули деформации; m и m — массы; W' и W' — ускорения.

Обеспечение педостающего веса—пригрузки модели— в наших опытах осуществлялось с помощью грузов, равномерно-распределенных по междуэтажным перекрытиям. Причем, определенная часть пригрузки была испосредственно иключена в объем междуэтажного железобетонного перекрытия.

Железобетонные междуэтажные перекрытия оригинала — многопустотные панели — в модели были заменены силошными плитами, отвечающими прочности и жесткости оригинала и позволяющими включить в себя пригрузку, приходящуюся на междуэтажное перекрытие от полезной нагрузки и неса панелей. Пригрузка от собственного неса стен осуществлялась повтажным нагружением перекрытий распределенной массой в виде кирпичей. Сопоставление механических характеристик оригинала и модели принедено в табл. 1. Данные втой таблицы спидетельствуют о высокой точности изготовления модели — отклонения

^{*} Здесь и в дальнейшем буквенные обозначения со штрихом относятся к мадели.

Таблица 1

Механические хароктеристики оригинала и модели

	Единида маме- рения	Оригинал	Модель		
Веанчины			фактиче-	расчетиме	отклонение. 0/0
Масся (І и ІІ втажи)	m	282	111	110	0,9
Месса III этажа	nı	203	82,3	79,2	-3,7
П падада сечения поперечных стен	.w ²	15,5	6	6	0
М ожент инердии поперечных степ	.H.E	183	28	28	0
П ериод собственных жолебаний и поперечном					
ваправления	CEK	0,172	0,137	0,136	0,7
Площаль сечения продольных стен	M2	12,6	4,9	4.9	0
Монент инерции продольных стен	.M ⁻¹	378	57,5	57,5	0
Паркод собственных колобаний в продольном	cen	0,176	0.140	0.139	±0,7

маханических характеристик модели от тех же неличин оригинала сос ставляют в среднем 10/0.

Для определения параметров колебаний грунта и моделей

грунте, фундаменте и в трех точках ни высоте модели были установлены намерительные приборы по лвум или трем направлениям ставляющих. Кроме того, для опрез сления принеденных сейсмических ускорений на грунте и фундаментах моделей устанавливались миогомаятниковые сейсмометры АИС-2М. План расстановки мо-

стойком и несейсмостойком, подвергались сейсмонарывным воздействиям в двух опытах:

І опыт при интенсивности VII баллов в продольном направлении;

II опыт основной — при интенсивности VIII баллов в ном направлении.

лелей и приборов показан на рис. 1. Модели жилых домов, пыполневные в двух вариантах - сейсмо- Рис. 1 План расположения моделей и

приборов: п) при 1 опыте; б) при 11 опыта, 1 - песейсмостойкий дом; 2 сейсмостойкий дом; 3-камера инмерительных приборов,

Значения параметров колебаний (смещение, скорость, ускорение) определялись как по записям, так и расчетным путем. Их сопоставление показывает, что величины параметров, полученные расчетным путем, можно использовать только для предварительной оце ики из-за их 3. TH. M 1

значительного расхождения с измеренными данными. Поэтому для получения болсе падежных выводов необходимо производить прямые замеры всех параметров колебании (смещение, скорость, ускорение, приведенное ускорение) и по ним строить спектры. Было также отмечено, что максимальные значения смещения, скорости и ускорения отпосятся пе к одной фазе, а к различным фазам общего колебательного процесса. Наличие такого факта затрудняет дать оцепку сейсмического поздействия по максимальным параметрам колебаний. Поэтому появилась необходимость спектрального представления колебаний.

На рис. 2 сплошными ливиями показаны интервалы смещений грунта для VII и VIII баллов, согласно [3, 4]. Из рисунка видно, что интепсивность колебаний грунта при втором взрыве соответствует VIII баллам.

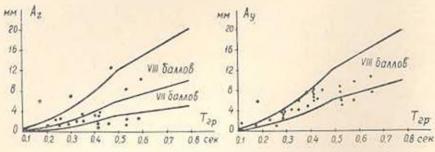


Рис. 2. Спектр смещений при II опыте.

На грунте были расставлены сейсмометры АИС-2М для опреде ления приведенных сейсмических ускорений системы с одной степенью свободы. На рис. З точками панесены измеренные приведенные сейс-

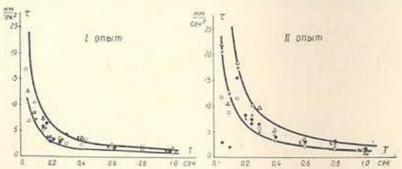


Рис. 3. Спектры приведенных сейсмических ускорений, определенных сейсмонетрами АИС-2М: — у сейсмостойкого дома; — у несейсмостойкого дома; — на расстоянии 50 м от домов; — на расстоянии 300 м от домов.

мические ускорения. Там же сплошными линиями нанесены интервалы принеденных сейсмических ускорений при интенсивности в VII и VIII баллов. Как видно, горизонтальные площадки принеденных сейсмических ускорений в интервале периодов 0 0,3 сек или в интервале периодов 0:0,5 сек [4] не подтверждаются опытом и с ростом перио-

дов колебаний, начиная с 0,05 сек, принеденные ссйсмические ускорення монотонно убывают. Это положение было отмечено и ранее в работах [5, 6]. Из рис. З видно, что интенсивность сейсмовзрывного воздействия при первом опыте соответствует VII баллам. а при втором VIII баллам. Это подтверждается также макросейсмическими данными, а именно: после перного опыта контуры всех сборных перемычек несейсмостойкого дома обозначались волосными трещинами. Отдельные случаи появления последних имели место и в кладке стен. Согласно описательной части шкал ИФЗ и МЅК - 1964, такие нарущения соответствуют легким повреждениям при интенсивности землетрясския и VII баллов. После второго опыта стены несейсмостойкого дома получили значительные повреждения — образовались трещины, что, согласно указанным шкалам, относятся к интенсивности в VIII баллов. В стенах сейсмостойкого дома, как после первого, так и после второго взрыва, видимых повреждений не было обчаружено.

Таким образом, можно констатировать, что как по макросейсмическим, так и по инструментальным данным, интенсивность колебаний при первом опыте соответствует VII баллам, а при втором— VIII баллам.

На основании анализа полученного экспериментального материвла можно сделать следующие выноды:

- 1. Рассмотренный нами случай расширенного подобия, который приблимается к простому, при решении поставленной задачи является нанболее выгодным, ввиду упрощения в технике экспериментирования, а также поэможности замены распределенной массы дискретными при соблюдении $m=x^*m$.
- 2. Сейсмостойкий дом со стенами из кирпича, рассчитанный по СНиП II-A, 12—62 на VIII баллон, при удонлетнорительном качестве строительных работ выдержал сейсмонэрывные колебания интенсивностью в VIII баллов без каких-либо повреждений.
- 3. Монолитные железобетонные антисейсмические нояса, сонмещенные с перемычками, а также горизонтальное сетчатое армирование кладки, являются надежными конструктивными мероприятиями, повышающими сейсмостойкость зданий в целом.
- 4. При рассмотрении спектров сейсмонарывных воли на выбранвых расстояниях обнаруживается некоторое подобие этих спектров со спектрами естественных землетрясений. Это дает возможность рекомендовать использование сейсмонарывных воли для исследования сейсмостойкости сооружений в условиях, близких к естественным землетрясениям, широко используя при этом моделирование.
- 5. Для получения наиболее обоснованных данных о колебаниях грунта и сооружения целесообразно получение одновременных записей смещений, скоростей, ускорений и приведенных ускорений в одной и той же точке.
 - б. Целесообразно интенсивность землетрясений оценивать не по

одному экстремальному значению параметра, а по всему характеру спектра в целом.

ИГИС АН АРМССР

Поступило 7.Х.1969.

վ. լ. ՄՆԱՑԱԿԱՆՅԱՆ

ԸՆԴԼԱՅՆՀԱԾ ՆՄԱՆՈՒԹՅԱՆ ՏԵՍՈՒԹՅԱՆ ԿԻՐԱՌՄԱՆ ՓՈՐՋ ՔԱՐԱՅԻՆ ԿՈՆՍՏՐՈՒԿՑԻԱՆԵՐԻ ՍԵՅՍՄԱԿԱՅՈՒՆՈՒԹՅԱՆ ՈՒՍՈՒՄՆԱՍԻՐՄԱՆ ՄԵՋ

Ամփոփում

Հոդվածում բերվում են սելոմապայիլունային ալիբների աղդեցության ներբո երկու հռահարկ աղյուսե բնակելի շենջերի մոդելների սելոմակայունուիյան ուսումնասիրման արդյունբները։ Մոդելները պատրաստված են երկու աարրերակներով՝ հակաերերալարժային միջոցառումների պահպանումով և առանց վերջինների։ Մոդելացումը կատարված է Ա. Դ. Նապարովի դեֆոր-մացիայի ենքարկվող պինդ մարմինների ընդլայնված նմանության տեսության մի դեպքի հիման վրա, որը մոտենում է հասարակ նմանությանը։

ЛИТЕРАТУРА

- 1. Назаров А. Г. О механическом подобин твердых деформируемых тел. Изд. АН АрмССР, Ереван, 1965.
- 2. Назаров А. Г. Случай расширенного подобия тиердых деформируемых тел, приближающегося и простому подобию. "ДАН АрмССР", т. XI.V. № 3, 1967.
- Медведса С. В. Новая сейсмическая шказа. "Труды геофизического института АН СССР", № 21, 1953.
- Медоелев С. В. Междупародная шкала сейсмической интенсивности. Сейсмическое районирование СССР. М., 1968.
- Шигинян С. А. Результаты инструментального определения ковффициентов динамичности, "Сбориня статей по сейсмостойному строительству. К пересмотру ворм". Душанбе, 1960.
- Шазинян С. А. Приведенные сейсмические ускорения при землетрясениях. "Бюллетень Сонета по сейсмологии", № 14, 1963.