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Abstract. General exotic commodity options involving more than one price process are modeled 
by an ordinary stochastic differential equation and mostly priced by either closed formula if one is 

derived or via Monte Carlo simulation. In this paper we derive some helpful simplification for general 
class of exotic switch options, with more than two commodity products, for less costly Monte Carlo 
simulation. 
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1. Introduction 

The present paper continues the investigations begun in [1]-[6]. Commodity 
derivatives combined with other assets or containing several commodities generally 
require numerical techniques for pricing. For most cases with difference of two 
assets one uses Margrabe’s formula (see [7]). Though this formula describes pricing 
for assets with predetermined dividend rate, one can derive analogous formula for 
case of two commodities (without any prescribed rate, but in complete market). 
The inspiration for this paper comes from market executed physical commodity 
sale/purchase contracts embedded with options. In one such case the physical 
commodity purchaser has the option of buying the commodity at the minimum 
of 2 future contracts. Denote these two future contracts prices by F (t, T1) and 
G(t, T2) at time t, where T1 and T2 are maturities of two contracts. Hereafter we 
always take risk free rate to be 0. 

Note that the negative sign denotes cash out during the purchase we can write 
down the following equation dropping T1 and T2 but keeping in mind that t1 ≤ 
T1 < t2 ≤ T2. 

− min(G(t2), F (t1)) = −G(t2)+ max(G(t2) −F (t1), 0) = −G(t2)+(G(t2) −F (t1))+ 

To see this explicitly for commodity market, consider the following derivative 

V = E((G(t2) − aF (t1))+) 
 

 

1The research of the second author is partially supported by the Mathematical Studies Center 
at Yerevan State University. 
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with G(t2) and F (t1) representing different commodities market prices at different
time, while E stands for expectation. This is a kind of exchange or switch option.

When working within Black-Scholes framework (with 1 driver for each process),
the closed-form formula is the following

V = x2Φ
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(1.1)

With x2 = G(0) and x1 = F (0), σ2
2 and σ2

1 are respective variances, and ρ is
instantaneous correlation of two commodities, thus correlation of two commodities
is ρt1.

Formula (1.1) naturally reduces to two special cases (thus it is generalization of
both of them).
1. Whenever we have G(t) = F (t) (meaning dealing with same commodity future
but in different times), the formula reduces to forward starting option.
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)
2. Whenever a = 1; and t2 = t1 = t, (1.1) reduces to Margrabe’s formula (with 0
dividends).
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It is the case where both commodities have one correlated driver having correlation
ρt (all parameters either known, or calibrated). This formula is quite easy to check
(see [8], and compare it to Margrabe’s formula).

When dealing with more than 2 commodities, we cannot derive closed form
formula for general case. Attempts to simplify computation have been made. Some
of applied models can be found in ([9, 10]). For mean reverting process model
pricing see [8]. For spot price spread options modelling based on given forward curve
dynamics see [11]. The simplifications here are done to make numerical analysis
faster.

As closed-form formulas are intractable or cannot be explicitly derived by use of
elementary functions, Monte Carlo simulation is used for the case of more than 2
commodities (see [12])

(1.2) Vs = E(h(G(t3), H(t2), F (t1))|Fs)

We consider an exact type of switch option. The aim of the paper is to provide an
easier formula to simplify Monte Carlo simulation and make the process faster, as
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generally Monte Carlo simulation with even 3 commodities require more than 109k

simulations at once, where k is multiplicity (order) of simulations.
If we could somehow reduce the dimension by one, we will make it 105k times

faster. For one exact type of 3 commodity based derivative we give algorithm
based on direct computation, and with computation of integral of bivariate normal
distribution. We give all necessary formulas as well as order of computation. In this
final form only 102k simulation are needed.

2. Statement of problem with three futures

As we deal with switch (exchange) options, we take exact form of function h(.)
in (1.2), namely

Vs = E(max(G(t3)−min(F (t1);H(t2)), 0)|Fs)

= E((G(t3)−min(F (t1);H(t2)))+|Fs)

If all three commodities G,F,H are driven with one Wiener process and can be
brought to martingale form, we would like to have some integral formula involving
bivariate normal distribution. Hereafter we will take s = 0, and use V = V 0

notation. Taking the processes to be

F (t1) = F (0)e−σ1Y1
√
t1+t1θ1 , H(t2) = H(0)e−σ2Y2

√
t2+t2θ2

G(t3) = G(0)e−σ3Y3
√
t3+t3θ3 .

(2.1)

Without loss of generality we assume t3 > t2 > t1 and

(2.2) (F (t1), H(t2), G(t3)) ∼ N
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0
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 .

Vector (F (t1), H(t2), G(t3)) has 3-dimensional normal distribution with mean vector
µ and covariation matrix Σ, with ρ12, ρ13, ρ23 are correlations (instantaneous) between
respective commodities (1 → F ; 2 → H; 3 → G). In general, making use of Monte
Carlo simulation, you will need 3 × 3 × k simulations, to calculate approximate
price.

What we do, is simplification of formula through direct computation, which later
yield to only 2 random variables to simulate. The nice part of it is that the derived
formula does not need combined simulation of bivariate normal random variables.
So there is no need to simulate 2 × 2 × k, but rather (1 + 1) × k, with the cost of
other additional computations.
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3. The main formula

Having the above framework, we can rewrite

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

max
(
G(0)e−σ3y3
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t3+t3θ3 − F (0)e−σ1y1
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)
dy1dy2dy3.

(3.1)

We divide the region of integration into three parts.
1. G(t3)− F (t1) ≥ max((G(t3)−H(t2), 0));

2. G(t3)−H(t2) > max(G(t3)− F (t1), 0);

3. 0 > max(G(t3)− F (t1), G(t3)−H(t2)).

These regions do not overlap, their union represent the whole domain of integration,
and on the 3rd region the integral yields 0. Now back to the first and 2nd regions.
The first region can be understood equivalently G(t3) > F (t1) & H(t2) > F (t1)

The 2nd region can be understood as G(t3) > H(t2) & H(t2) < F (t1) So we can
rewrite V = V1 + V2. The final formula will have the following complicated form,
where Φ2 stands for bivariate normal distribution function: for V1

P1
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and
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(3.8)

where

(3.9) |Σ| = 1 +
2ρ12ρ13ρ23t1

t3
− ρ213t1

t3
− ρ223t2

t3
− ρ212t1

t2

Each term (3.3)-(3.9) should be calculated precisely in the following order. First
fix some y1. Then do the calculation like this (3.9) → (3.7) → (3.3)(3.5) →
(3.4)(3.6)(3.8). Here (3.6) and (3.7) represents all parameters of both bivariate
normal distributions. Note that they change with the change of y1. Before computing
(3.3) one can calculate integrals first. As (3.3) does not depend on y1. For calculating
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integral just make y1 change through some interval (with small steps note also that
one cannot say that interval (−3σ, 3σ), as σ changes with y1). We obtain

V2 = P2

∫ ∞
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(3.13)

mC,I = −y2v1; mC,III = −y2v3
mD,I = −y2w1; mD,III = −y2w3

(3.14)
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(3.16)

Generate y2. Then make the calculation like this (3.9) → (3.15)(3.13) → (3.11) →
(3.12)(3.14)(3.16).

Once you take inputs and combine them into formula (3.1), the remaining part
is usage general Cholesky decomposition techniques (for 2 variable case it takes
extremely simple form, see for example Box-Muller transform [12]), and generate 2
correlated variables in the form given in V1 and V2. This is exactly what is done in
(3.4) and (3.12). Note, however, that one needs only one standard normal variable
in each part. So first generate 2 normal random variables with prescribed bivariate
distribution, then use each one in the integral.
Concluding algorithm:
1. Calibrate the parameters of the model parameters in (2.1) (either using least
square or other techniques), plus find correlations from (2.2) (with correlation
matrices estimation techniques).
2. Calculate (3.9)→ (3.4)→ (3.3)(3.5).
3. Generate y1 running through some interval.
4. Calculate for each y1 (3.4)(3.6)(3.8).
5. Then calculate normal distrbution values from (3.2) first and second integral.
Multiply them by exponents in (3.8), and interval length of each step of change of
y1. Sum up them to compute integrals.

83



H. KECHEJIAN, V. K. OHANYAN AND V. G. BARDAKHCHYAN

6. Find the value of (3.2).
7. Use (3.9) and further compute. (3.15)(3.13)→ (3.11).
8. Generate y2 running through some interval.
9. Calculate for each y2 (3.12)(3.14)(3.16).
10. The same as in step 5, but for the second part (3.10) and using (3.16).
11. Find the value of (3.10).
12. Sum (3.2) and (3.10) to find (3.1).

Note that you need to generate only 1 variable in each case. In given form one
needs to generate ∼ 102k. However more computation should be carried out at each
step. So the general result can be formulated as follows.

Theorem 3.1. The price of (1.2) with given properties of h(.) function can be
found by formula V = V1 + V2, where V1 and V2 can be calculated by (3.2) and
(3.10).

Remark. The described algorithm shows reduction in size of simulations needed
for pricing by up to 107k times.
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