ЛИТЕРАТУРА

1 Каудорер Г. Неаннейная механика, М., 1955.

л. а. захаров

ОБ УПРУГИХ СВОЙСТВАХ II ПОЛЗУЧЕСТИ БЕТОНА НА ГЛИНОЗЕМИСТО-БЕЛИТОВОМ ЦЕМЕНТЕ

Глиноземисто-белитовый цемент является новым видом гидравлического вяжущего вещества [1]. Поэтому представляет интерес выявление упругих свойств и ползучести бетонов на этом цементе. В табл. 1 приведены составы изученных бетонов.

Ταδλυμα Ι

Марка бет она	Заполни	Состан бетона	
_ mupra verons	песок	щебень	объему)
.150*	Калрцепын (речной)	Базальтовый	1:2,4:3,2
.300*			111,4:1,9
.150*	Литондно-п	1:1,9:2,5	
.3001	4		1:1,2:1,6

Полученные на глипоземисто-белитовом цементе бетопные смеси имели хорошую обрабатываемость и не обнаруживали признаков рассмоения. Наблюдение показало, что характер роста прочности глипоземисто-белитового цемента сохраняется и у бетонов, а именно: интенсивное нарастание прочности имеет место лишь в ранние (1—3 суток) и поздние (3—6 месяцев) сроки твердения. Определение модуля упругости бетонов проводилось статическим и динамическим методами [2]. Модуль упругости определялся на призмах размерами 10×10×340 см при возрасте бетона 28 суток. Хранение образцов было стандартное. В табл. 2 приведены результаты определений модуля упругости.

Таблица 2

Вид бетона	Марка бетона	Величина модуля упругости кГ/см-			
		статического	динамического		
Тажелый	.150-	167000	261000		
4	.300-	200000	684000		
Легкий	.150	73000	99000		
	.3004	111000	141000		

В табл. З для сравнения даны значения модуля упругости, приведенные для бетонов, приготовленных на портландском и глиноземистом [3] цементах. Сопоставление данных таблиц 2 и 3 позволяет

3			6					0	3
ĕ	4	2	U	ò	ě	£	и	Œ	-37

Тип цемента	Вид бетона	Марка бетона	Величина модуля упру- гости кЁ/см²
Портланл- ский	Тяжелый бетон (на базальтовом шебне и кварцевом песке)	,150°	225000 230000
		.300*	325000 330000
	Легкий бетон (на литондио-пемловых заполнителих)	.150*	120000130000
		1300	160000 ÷ 170000
Глинозе- мистып	Тяжелый бетон (на гранитиом щеб- не и кварцевом песке)	.2004	165000÷190000
		.350*	200300÷220000

константировать, что модуль упругости бетона на глиноземисто-белитовом цементе, примерно такой же как и для бетонов на глиноземистом цементе и выше модуля упругости бетонов на портландцементе.

На рис. 1 приведена экспериментальная кривая ползучести призм размерами $10 \times 10 \times 60$ см из тяжелого бетона марки "150" на глиноземисто-белитовом цементе при относительном сжимающем напряжении, равном 0,5.

Для сравнения на том же рисунке приведена экспериментальная кривая ползучести тяжелого бетона на портландцементе при том же относительном напряжении. Кривые на рис. 1 показывают, что бетои на глиноземисто-белитовом цементе обладает значительно большей ползучестью, чем бетон на портландцементе.

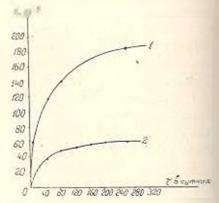


Рис. 1. Ползучесть тяжелого бетона нагружаемого после 28 суток воздушного гвердения: 1 — бетон на тлиноземисто-белитовом цементе; 2 бетон на портланацементе

Это закономерно, так как бетоны, приготовленные на цементах с повышенным содержанием белита, всегда обладают повышенной ползучестью.

ЛИТЕРАТУРА

- Захаров Л. А. Глиноземисто-белитовый пемент. Тр. III-го Всесоюзного совещания по химки и технологии пемента. М., 1967.
- Тудавердин В, М. Вторичное твердение летнего бетона при его обводнении. "Известия АН АриССР (серия ТН)", т. Х. № 2, 1957.
- Чебуков М. Ф. Глиноземистый цемент. ГОПТИ, 1938.

г. д. степанян

К МЕТОДИКЕ ОПРЕДЕЛЕНИЯ РАСЧЕТНОИ ВОДООБЕСПЕЧЕННОСТИ И К. П. Д. ПРОЕКТИРУЕМЫХ ИРРИГАЦИОННЫХ СИСТЕМ

Важной проблемой в развитии сельскохозяйственного производства в нашей стране является вопрос эффективного использования водных и земельных ресурсов районов развития ирригации. При этом одной из основных задач проектирования таких ирригационных систем приятся наиболее эффективное использование земельных и водных ресурсов, а также капитальных вложений, выделяемых на орошение. За основу расчетов нараметров проектируемых оросительных систем принимается показатель обеспеченности, обычно выражаемый в процентах от числа лет, в течение которых средний годовой сток не снижается за пределы некоторого определенного минимума. Этот показатель, являющийся в известной мере основным при проектировании оросительных систем, имеет особо важное значение для объектов, сооружаемых в районах с ограниченными водными ресурсами, каковыми приятеленся большинство районов Армянской ССР.

В сообщении автора излагаются методические вопросы определения оптимального значения расчетной обеспеченности во взаимосаям ее с коэффициентом полезного действия. В исследовании расматривался водоисточник с незарегулированным стоком, используемый в условиях, характерных для Армянской ССР.

В основу расчетов был положен следующий состав сельскохоийственных культур: виноградники — 20%, сады — 20%, овоще-бахчене культуры — 25%, корнеплоды — 5%, озимые (с подсевом) — 7.5%, люцерна — 15%, кукуруза на зерно — 5%, яровые — 2.5%, кукуруза пожнивная — 5%, а также теоретическая кривая обеспеченности расходов водоисточника со следующими параметрами: $Q_0 =$ 3.9 м/сек, $C_Y = 0.3 \text{ н. } C_S = 2C_S$. В качестве критерия оптимальности был использован коэффициент рентабельности капитальных вложений.

Для установления эффективности затрат по осуществлению противофильтрационных мероприятий был использован характерный для республиканских условий орошения пример планового расположения постоянных каналов и временной оросительной сети при бетопироваши только постоянных каналов. Были рассмотрены различные вариан-