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Abstract. The phenomenon of scattering of a plane electromagnetic wave on a nonmagnetoactive 
conductive ball is studied. The dispersion of electromagnetic waves inside the ball material is taken into 
account. A special case of that phenomenon (the radius of the ball is much smaller than the wavelength of 
the scattered wave) lies in the basis of the work of a spaser, which can have a wide range of important 
practical applications. 
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1. Introduction 
 

The interaction between electromagnetic waves and small spherical metal particles is under 
consideration for years (see e.g. [1]). Our particular interest is the case, when the particle is smaller, 
than the wavelength of scattered wave. 

Consider scattering of a plane electromagnetic wave on a conductive ball. Our goal is to study 
the most apparent features of the scattered field, caused by the falling wave frequency and by the 
choice of the conductive ball parameter values. We study the electromagnetic waves at large 
distances. The analysis is based on the corresponding exact analytical solutions of Maxwell 
equations, using vector spherical functions. The medium is non-homogeneous, 
spherically-symmetric and the solutions are obtained by the method of Green function [2, 3]. 

The importance of that phenomenon is their usage in many electronic devices, such as lasers, 
nanolasers. The first sample of nanolaser had been presented in 2008 in USA, and the researchers got 
the Nobel Prize [4]. That could become the main component of future optical computers. 
Researchers are especially concentrating on the fact, that due to the very small size of metal 
nanostructures and the optical speed of the processes occurring in them, nanoplasmonics will create 
a new element base for optical computers and data processing devices. There is a case, when one can 
obtain high intensity radiation. For instance, the operation of spaser [5] is based on special case of 
this phenomenon under consideration, when the ball radius is much smaller than the wavelength of 
scattered wave. It can be used to amplify surface waves. 

The paper provides the basis of the theory of the characteristic features of this phenomenon and 
its obvious explanation. 

 
2. Electromagnetic waves in a spherically symmetric medium 
 
2.1. Lorenz gauge 
 

Let us consider the scattering of electromagnetic waves in a spherically symmetric and 
inhomogeneous medium. It is convenient to go over to Fourier expansions of the physical quantities: 
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Let us introduce scalar ϕ  and vector A


 potentials [6-8] 
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In the Lorentz gauge, the relationship between scalar ωϕ  and vector Aω


 potentials is 

described by equation 
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We choose a spherical coordinate system ϕθ ,,r  with the origin at the center of symmetry of 

the medium. As a result, the dielectric )(ε  and magnetic )(µ  permittivities of the medium will 
depend only on the quantities r  and ω  and will not depend on ϕθ , : 

 
),( ωεε r= ,          ),( ωµµ r= .    (4) 

 
In a nonmagnetoactive medium with 1=µ  the system of Maxwell equations is transformed 

into a single vector equation that describes the propagation of electromagnetic waves in a spherically 
symmetric and inhomogeneous medium [8] 
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Here ε  can be an arbitrary function depending on r and ω . Thus, solving the differential 

equation (5), one can determine the propagation of electromagnetic waves for any given function
),( ωε r . 

 
2.2 Selection of basis vector functions 

 
In our case (a spherically symmetric medium) it is convenient to choose a basis of so-called 

vector spherical functions )(µ
lmX


 (spherical vectors) [9, 10]. 

An arbitrary vector field S


 can be expanded in a series over these vectors )(µ
lmX
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where )(µ

lmX


 is the vector spherical function of longitudinal ( 1=µ ), electric ( 2=µ ), and magnetic 
( 3=µ ) types [9]. 

According to (6) 

∑∑∑
=

∞

= −=

Ω=
3

1 0

)( )()()(
µ

µ
µ

l

l

lm
lm

lm XrArA
      (7) 

 
the determination of a vector field )(rA   reduces to the determination of functions )(rA lm

µ  that do 
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not depend on the solid angle ),( ϕθ=Ω . Substituting (7) in (5) and multiplying the both sides of 
this equation by *)(µ

lmX


, after integration by ),( ϕθ=Ω  with respect to the orthonormality of the 

vector functions )(µ
lmX


 [8], one finds that [11,12] 
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Here F̂  and D̂  are 3x3 matrices and, at the same time, operators of second-order 

differentiation according to r . Their explicit forms are given in [11, 12]. 
Thus, the problem reduces to determining the function )(rA lm

µ  from equation (8). One again 
notes that we replaced the solution of the basic vector equation (5) with the solution of the new basic 
equation (8). Its advantage lies in the fact that unknown functions )(rA lm

µ  depend only on one 
variable r . 

 
2.3. The solution of the fundamental equation (8) 
 

We will use the method [2,3,11-13] specially adapted to the solution of problems of 
electrodynamics in spherically symmetric layered media. In the framework of this method, the 
solution of equation (8) can be represented in the following form [13] 
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and the auxiliary functions ( ) ( )lmA rµ ν  are determined from the following "truncated" equations 
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They can be written in the following matrix form 
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The Green function in (9) must satisfy the following truncated equation 
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Thus, the solution of the basic equation (8) reduces to solving the integral equation (9). The 

effectiveness of this method is due to the fact that in our case, if we substitute (15) in (10), then we 
get that 
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V̂ ~ )( brr −δ .       (14) 
 

As a result, the integral equation (9) reduces to a much simpler algebraic equation [11,12]. 
3. Scattering of a plane electromagnetic wave on a conductive ball 

 
Now consider the propagation of electromagnetic waves, when a spherically symmetric 

medium is a nonmagnetoactive conductive ball surrounded by a vacuum. 
 

 
Fig. 1. Scattering of a plane electromagnetic wave on a conductive ball. 

 
In this case, the dielectric permeability of the medium is a step function: 
 

),()()( 0 bbb rrr −Θ−+= εεεε      (15) 
 

where )(xΘ is the Heaviside step function. 
 
3.1. Resonant scattering on a small size conductive ball 
 

If the dielectric permeability ε  of the medium accepts finite values and depends on the 
frequency )(ωε , then it turns out that in scattered electromagnetic wave spectra for certain 
frequencies there is a strong (resonant) scattering and it is particularly significant that it happens at 
frequencies 0ω  when dielectric permeability of a small size ball is 2−=ε . 

In order to clarify the essence of this phenomenon, it is expedient to study the radiation that is 
generated when the charged particle uniformly passes through a center of a conductive ball. 
 
3.2. The strong (resonant) effect of the conductive ball on the charged particle radiation [14] 
 

Consider a charged particle that uniformly passes through the center of a conductive ball flying 
rectilinearly and uniformly (see Fig. 2). 

 

 
Fig. 2. Charged particle uniformly passes through the center of a conductive ball. 

 
In this case, the dielectric permeability of the medium is a step function (15). 

Let us investigate the spectral energy distribution 
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radiated by a charged particle, during its entire time of motion. An analogous problem for a particle 
passing through the center of a dielectric ball was solved in the work [15]. At the same time, the 
results of analytical calculations [15] are applicable without restrictions on values of bε  and the 
dependence of this quantity on the frequencyω . Therefore, the expression for the spectral density of 
the radiated energy )(ωI  derived in this paper is applicable also in the case of a conductive ball. The 
analytic expressions defining the explicit form of the function )(ωI  (see [15]) are rather 
cumbersome, and therefore we do not give them here for brevity. 
 
3.3. Numerical results 
 

Numerical calculations were carried out [14] for a microscopic ball with a radius of 100 nm 
made of gold. The energy of a charged particle passing through the ball was assumed to be 2 MeV. 

Comparing the given data (see Fig. 3), we arrive at the following conclusions: 
In the emission spectrum of an electron there is a peak in the vicinity of a certain so-called 

"resonant frequency". 
The value of the spectral density of the radiated energy at this frequency is (significant) many 

times more than the values of this quantity at nearby neighboring frequencies. 
 

3.4. The visual explanation 
 

The dotted curve in Fig. 3 describes the radiation of the same electron passing through a flat 
parallel plate made of gold and having a thickness equal to the diameter of the ball of 200 nm. In both 
cases, the radiation is connected with the generation of electromagnetic oscillations in the ball 
material by a charged particle. The volume of the ball is much smaller than the volume of the plate 
and it is therefore natural to expect that the radiation in the case of the ball should be much weaker 
than in the case of the plate. In Fig 3 we see that this circumstance is confirmed, besides for the range 
around 15104 ⋅ Hz frequency. 

 

 
Fig. 3. The spectral distribution of radiation, generated by an electron passing through a golden ball,  

with radius of 100 nm (solid curve), and passing through a plane parallel golden plate,  



Sargsyan || Armenian Journal of Physics, 2021, vol. 14, issue 4 
 

178 
 

with the thickness equal to the diameter of the ball (dashed curve). 
 
The course of the curves in Fig. 3 confirms this circumstance with the exception of a narrow 

frequency region near the resonant frequency of the order of 15104 ⋅ Hz. The question arises: why 
near the resonant frequency of the order of 15104 ⋅  Hz the spectral density of the radiated energy in 
the case of the ball is greater than in the case of the plate? The key to the answer to this question is 
given in the upper part of Fig 3. The abscissa indicates the values of Auε ′ . As can be seen from the 
given data, the real part of the dielectric permeability of the conductive ball at the resonant frequency 
assumes negative values 04.2 <−=′Auε . 

In such a case, the dispersion equation forbids the propagation of electromagnetic waves in the 
ball material at least along one of the three independent directions in the ball, but it is possible the 
propagation of electromagnetic oscillations of a substance localized at the interface with a vacuum 
(surface waves). It is clear that surface waves are generated both in the case of the ball and in the case 
of the plate, but with one important difference. In the case of the plate, the interface with vacuum is 
infinite and, in the case of the ball, it is finite and closed, and therefore surface waves are 
superimposed on each other. At most frequencies there is a destructive superposition of 
electromagnetic oscillations on each other, as a result of which their amplitude decreases. However, 
at some frequencies (eigen frequencies of the ball), there is a constructive superposition of the 
oscillations on each other, as a result of which their amplitude significantly increases. 

In summary, we reach the following conclusion: a charged particle, crossing the ball, generates 
surface electromagnetic oscillations at the eigen frequencies of the ball, which at large distance from 
this ball manifest themselves as resonant radiation. 

 
3.5. An appearing explanation of resonant scattering 

 
It is noteworthy that resonant scattering of a plane electromagnetic wave on a small size ball 

appears at the frequencies for which the value of the dielectric permeability is 2−=ε , which is close 
to the value that provided in the case of resonant radiation. In this case falling electromagnetic wave 
generates surface waves on the ball, which superpose with each other on the resonance frequency 
coherently. These surface waves are accompanied by high intensive electromagnetic waves that 
propagate at a large distance from the ball. These waves are interpreted as resonant radiation in the 
case of falling electron and, in the case of a wave, as resonant scattering. 

 
4. Applications 

 
This resonant scattering may have important practical applications, such as in optronics [5]. It is 

noteworthy, that resonance scattering is used not only in spacer (in nanolaser), but it can also be used 
to determine the level of atmosphere pollution, particularly, by looking at its own resonance 
frequency, you can know what metal microparticles are for example in the current atmosphere. 
 
5. Conclusions 
 

The phenomenon of scattering of an electromagnetic wave on a nonmagnetoactive conductive 
ball is studied taking into account the dispersion of electromagnetic waves inside the ball material. 
The analysis is based on the corresponding exact analytical solutions of Maxwell equations. These 
solutions are obtained by the method of Green function presented in [2,3]. The visual explanation is 
given about why the resonant scattering may appear when plane waves of certain frequencies scatter 
on the ball. The operation of spacer [5] is based on the special case of the phenomenon under 
consideration, when the ball radius is much smaller than the wavelength of scattered wave. This 
phenomenon may have a wide spectrum of important practical applications. 
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