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The radiation of a particle instantly injected into an infinite ideal cylindrical waveguide and 
implementing a helical motion is considered. Additionally, the problem of the radiation of a time-
varying point charge moving stationary along a helical orbit in the same waveguide is also solved. 
Additionally, an explicit expression is obtained for the longitudinal component of the electric field of 
radiation with a wavefront moving together with the particle. The basic properties of radiation are 
determined: the conditions for its forward propagation are obtained, and its angular directivity is 
determined. A formula is given that describes radiation upon gradual introduction of a bunch into a 
waveguide (modeling the injection process) and during its subsequent propagation. 
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1. Introduction 

 
The helical undulator transforms its radiation spectrum in the presence of a waveguide, 

converting it from continuous to discrete, which significantly improves its radiation characteristics. 
This technique is especially effective in the terahertz frequency range. At a small radius of the 
waveguide, the spectral lines are located at a significant distance from each other, which makes it 
possible to use it in a single-frequency mode. By appropriate selection of undulator parameters, it is 
possible to achieve the concentration of most radiation energy in one of the waveguide modes [1], 
which will lead to its even more efficient use, maximizing the power of the emitted mode and 
suppressing the rest. 

Except for works [2, 3], to date, the focus has been on the cases of stationary helical motion of 
a particle in infinite rectangular [4-6] and circular waveguides [1, 7-11]. Meanwhile, there is an 
injection process in real undulators, i.e., the introduction of a bunch into an undulator, which is 
equivalent to the gradual appearance of bunch particles in an undulator. When considering the 
helical motion of the bunch in the waveguide of finite dimensions, the deformations of the 
wavefront due to the principle of causality should be taken into account because of the temporary 
effects arising from the sudden appearance of a particle do not smooth out over time: the field 
amplitudes remain time-dependent. 

In the present work, at first, as an auxiliary one, we consider the problem of the stationary 
motion of a point particle with a charge varying with time and performing a helical motion in an 
infinite ideal cylindrical waveguide. Then, on its basis, the problem of a particle that suddenly 
appears at a specific moment and moves along a helical trajectory in the same waveguide is solved. 
In conclusion, a formula is given that describes the gradual appearance of a bunch of charged 
particles, which simulates the process of its injection. 
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Fig. 1. The orbit of the helically moving charge and some parameters of the waveguide.  

 
 

2. Radiation of a charge varying in time 
 

Consider relativistic point charge with longitudinal velocity V and with the charge 𝑄𝑄(𝑡𝑡), 
arbitrary dependent from the time, moving along the helical trajectory in the homogeneous 
waveguide. The motion takes place in the circular waveguide with the perfect conducting walls and 
the radius of 𝑏𝑏 (Fig. 1). The charge density 𝜌𝜌� and the charge current 𝚥𝚥̃⃗ are given in the forms: 

 
𝜌𝜌(𝑟𝑟,𝜑𝜑, 𝑧𝑧, 𝑡𝑡) = 𝑞𝑞𝑄𝑄(𝑡𝑡) 𝛿𝛿(𝑟𝑟−𝑎𝑎)

√𝑟𝑟𝑎𝑎
𝛿𝛿(𝜑𝜑 − 𝜔𝜔𝑏𝑏𝑡𝑡)𝛿𝛿(𝑧𝑧 − 𝑉𝑉𝑡𝑡)   (1) 

𝚥𝚥(𝑟𝑟,𝜑𝜑, 𝑧𝑧, 𝑡𝑡) = 𝑞𝑞𝑄𝑄(𝑡𝑡) (𝜔𝜔𝑏𝑏𝑎𝑎𝑒𝑒𝜑𝜑 + 𝑉𝑉𝑒𝑒𝑧𝑧) 𝛿𝛿(𝑟𝑟−𝑎𝑎)
√𝑟𝑟𝑎𝑎

𝛿𝛿(𝜑𝜑 − 𝜔𝜔𝑏𝑏𝑡𝑡)𝛿𝛿(𝑧𝑧 − 𝑉𝑉𝑡𝑡),   (2) 
 

where 𝑒𝑒𝜑𝜑and 𝑒𝑒𝑧𝑧 are unit vectors in the cylindrical coordinates and 𝑉𝑉 is the longitudinal velocity of 
the particle, 𝜔𝜔0 = 2𝜋𝜋𝑉𝑉/𝜆𝜆𝑢𝑢  is the particle revolution frequency, 𝜆𝜆𝑢𝑢  is the undulator period. The 
helix radius 𝑎𝑎 can be given in the form of 𝑎𝑎 = 𝜆𝜆𝑢𝑢𝐾𝐾/2𝜋𝜋𝜋𝜋, where 𝐾𝐾 = 0.93𝐵𝐵0[𝑇𝑇] ∙ 𝜆𝜆𝑢𝑢[𝑐𝑐𝑐𝑐] is the 
dimensionless undulator parameter and 𝐵𝐵0 is the maximum of the magnetic field on axial direction, 
𝜋𝜋 is the particle Lorentz factor.  

The radiation fields are determined from the wave equations: The radiation fields are 
determined from the wave equations: 

  
�∆ − 1

𝑐𝑐2
𝜕𝜕
𝜕𝜕𝑡𝑡2
� 𝐸𝐸�⃗ = 𝑃𝑃�⃗  (3) 

�∆ − 1
𝑐𝑐2

𝜕𝜕
𝜕𝜕𝑡𝑡2
�𝐻𝐻��⃗ = 𝑄𝑄�⃗  (4) 

 
for the electrical and magnetic components of the radiation field, respectively. 

Further: 
𝑃𝑃�⃗ = 𝜇𝜇0 �

𝜕𝜕𝚥𝚥
𝜕𝜕𝑡𝑡

+ 𝑐𝑐2∇𝜌𝜌� (5) 

𝑄𝑄�⃗ = −𝑟𝑟𝑟𝑟𝑡𝑡𝚥𝚥 (6) 
 

The solutions of the wave equations (3) and (4) are sought by passing to the time-frequency 
domain: the right-hand sides of these equations are replaced by their Fourier transforms along the 
longitudinal coordinate z: 
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𝑃𝑃�⃗ 𝑧𝑧 = 𝑒𝑒𝑗𝑗𝑗𝑗𝑧𝑧 ∫ 𝑃𝑃�⃗ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑧𝑧𝑑𝑑𝑧𝑧∞
−∞ , 𝑄𝑄�⃗ 𝑧𝑧 = 𝑒𝑒𝑗𝑗𝑗𝑗𝑧𝑧 ∫ 𝑄𝑄�⃗ 𝑒𝑒−𝑗𝑗𝑗𝑗𝑧𝑧𝑑𝑑𝑧𝑧∞

−∞     (7) 
 

or, explicitly: 
 

𝑃𝑃�⃗𝑟𝑟𝑧𝑧 = 𝑞𝑞𝑄𝑄(𝑡𝑡)𝑒𝑒𝑗𝑗𝑗𝑗(𝑧𝑧−𝑉𝑉𝑡𝑡)𝑐𝑐2𝜇𝜇0𝛿𝛿𝜑𝜑�−𝑟𝑟−2𝛿𝛿(𝑟𝑟 − 𝑎𝑎) + 𝑟𝑟−1𝛿𝛿′(𝑟𝑟 − 𝑎𝑎)�     
𝑃𝑃�⃗𝜑𝜑𝑧𝑧 = 𝑞𝑞𝜇𝜇0𝛿𝛿(𝑟𝑟 − 𝑎𝑎){(−𝑗𝑗𝑗𝑗𝑉𝑉𝜔𝜔0𝛿𝛿𝛿𝛿𝜑𝜑 + 𝑟𝑟−2𝑐𝑐2𝛿𝛿𝜑𝜑′ + 𝜔𝜔0

2𝛿𝛿𝜑𝜑′)𝑄𝑄(𝑡𝑡) + 𝜔𝜔0𝛿𝛿𝜑𝜑𝑄𝑄′(𝑡𝑡)}𝑒𝑒𝑗𝑗𝑗𝑗(𝑧𝑧−𝑉𝑉𝑡𝑡)  
𝑃𝑃�⃗𝑧𝑧𝑧𝑧 = 𝑞𝑞𝜇𝜇0𝛿𝛿(𝑟𝑟 − 𝑎𝑎)𝑟𝑟−1{(𝛿𝛿𝜑𝜑𝑗𝑗(𝑗𝑗𝑐𝑐2 + 𝑉𝑉2) + 𝑉𝑉𝜔𝜔0𝛿𝛿𝜑𝜑′)𝑄𝑄(𝑡𝑡) + 𝑉𝑉𝛿𝛿𝜑𝜑𝑄𝑄′(𝑡𝑡)}𝑒𝑒𝑗𝑗𝑗𝑗(𝑧𝑧−𝑉𝑉𝑡𝑡) (8) 

𝛿𝛿𝜑𝜑 = 𝛿𝛿(𝜑𝜑 − 𝜔𝜔0𝑡𝑡), 𝛿𝛿𝜑𝜑′ = 𝛿𝛿′(𝜑𝜑 − 𝜔𝜔0𝑡𝑡) 
  

The electrical and magnetic fields are sought in the form of vector cylindrical mode 
compositions, which combine TM and TE harmonics: 

 
𝐸𝐸�⃗ = ∑ �𝐸𝐸�⃗ 𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇 + 𝐸𝐸�⃗ 𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇 �∞

𝑛𝑛,𝑛𝑛=1          (9) 
 
The longitudinal components of electric and magnetic harmonics are written in the form of 

expansion terms in Bessel functions of the first kind 
 
𝐸𝐸�𝑛𝑛𝑛𝑛𝑧𝑧
𝑇𝑇𝑇𝑇 = 𝑈𝑈𝑛𝑛𝑛𝑛𝜓𝜓𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇 ,   𝜓𝜓𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇 = 𝐽𝐽𝑛𝑛 �𝑗𝑗𝑛𝑛𝑛𝑛

𝑟𝑟
𝑏𝑏
� 𝑒𝑒𝑗𝑗𝑛𝑛(𝜑𝜑−𝜔𝜔0𝑡𝑡)𝑒𝑒𝑗𝑗𝑗𝑗(𝑧𝑧−𝑉𝑉𝑡𝑡)  

𝐻𝐻�𝑛𝑛𝑛𝑛𝑧𝑧
𝑇𝑇𝑇𝑇 = 𝑐𝑐𝜀𝜀0𝑊𝑊𝑛𝑛𝑛𝑛𝜓𝜓𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇 ,     𝜓𝜓𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇 = 𝐽𝐽𝑛𝑛 �𝜈𝜈𝑛𝑛𝑛𝑛

𝑟𝑟
𝑏𝑏
� 𝑒𝑒𝑗𝑗𝑛𝑛(𝜑𝜑−𝜔𝜔0𝑡𝑡)𝑒𝑒𝑗𝑗𝑗𝑗(𝑧𝑧−𝑉𝑉𝑡𝑡)            (10) 

 
where 𝑗𝑗𝑛𝑛𝑛𝑛 and 𝜈𝜈𝑛𝑛𝑛𝑛 are the roots of the Bessel function and its derivative, respectively: 𝐽𝐽𝑛𝑛(𝑗𝑗𝑛𝑛𝑛𝑛) =
0, 𝐽𝐽𝑛𝑛′ (𝜈𝜈𝑛𝑛𝑛𝑛) = 0. 

Transverse components TM and TE of the radiation fields’ frequency distributions are written 
in the form: 

 
ℇ��⃗ 𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇 = {ℇ𝑛𝑛𝑛𝑛𝑟𝑟

𝑇𝑇𝑇𝑇 ,ℇ𝑛𝑛𝑛𝑛𝜑𝜑
𝑇𝑇𝑇𝑇 , 0}                                     ℋ��⃗ 𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇 = {ℋ𝑛𝑛𝑛𝑛𝑟𝑟

𝑇𝑇𝑇𝑇 ,ℋ𝑛𝑛𝑛𝑛𝜑𝜑
𝑇𝑇𝑇𝑇 , 0}    

𝐸𝐸��⃗ 𝑛𝑛𝑛𝑛𝑡𝑡
𝑇𝑇𝑇𝑇 = 𝐴𝐴𝑛𝑛𝑛𝑛ℇ��⃗ 𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇  𝐻𝐻���⃗ 𝑡𝑡𝑇𝑇𝑇𝑇 = 𝐷𝐷𝑛𝑛𝑛𝑛 ℋ��⃗ 𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇  

𝐻𝐻���⃗ 𝑛𝑛𝑛𝑛𝑡𝑡
𝑇𝑇𝑇𝑇 = 𝐶𝐶𝑛𝑛𝑛𝑛𝑐𝑐𝜀𝜀0�𝑒𝑒𝑧𝑧 × ℇ��⃗ 𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇� 𝐸𝐸��⃗ 𝑡𝑡𝑇𝑇𝑇𝑇 = −𝐵𝐵𝑛𝑛𝑛𝑛(𝑐𝑐𝜀𝜀0)−1[𝑒𝑒𝑧𝑧 × ℋ��⃗ 𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇 ] 

ℇ𝑛𝑛𝑛𝑛𝑟𝑟
𝑇𝑇𝑇𝑇 = 𝜕𝜕 𝜓𝜓𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇

𝜕𝜕𝑟𝑟
, ℇ𝑛𝑛𝑛𝑛𝜑𝜑

𝑇𝑇𝑇𝑇 = 𝑗𝑗 𝑛𝑛
𝑟𝑟
𝜓𝜓𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇 ℋ𝑛𝑛𝑛𝑛𝑟𝑟

𝑇𝑇𝑇𝑇 = 𝜕𝜕 𝜓𝜓𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇

𝜕𝜕𝑟𝑟
,ℋ𝑛𝑛𝑛𝑛𝜑𝜑

𝑇𝑇𝑇𝑇 = 𝑗𝑗 𝑛𝑛
𝑟𝑟

 𝜓𝜓𝑛𝑛𝑛𝑛𝑇𝑇𝑇𝑇            (11) 
  
Putting (9), (10) and (11) in the wave equation (3) give the system of equations for the 

amplitudes 𝑈𝑈𝑛𝑛𝑛𝑛, 𝐴𝐴𝑛𝑛𝑛𝑛 and 𝐵𝐵𝑛𝑛𝑛𝑛: 
 
𝑒𝑒𝑗𝑗𝑗𝑗(𝑧𝑧−𝑉𝑉𝑡𝑡)

𝑏𝑏3𝑐𝑐2𝑟𝑟
∑ 𝑒𝑒𝑗𝑗𝑛𝑛(𝜑𝜑−𝜔𝜔0𝑡𝑡) �𝑗𝑗𝑛𝑛𝑛𝑛𝑟𝑟𝐽𝐽𝑛𝑛′ �𝑗𝑗𝑛𝑛𝑛𝑛

𝑟𝑟
𝑏𝑏
�𝐺𝐺𝐴𝐴 + 𝑗𝑗𝑏𝑏𝑛𝑛𝐽𝐽𝑛𝑛 �𝜈𝜈𝑛𝑛𝑛𝑛

𝑟𝑟
𝑏𝑏
�𝐺𝐺𝐵𝐵�∞

𝑛𝑛,𝑛𝑛=1 = 𝑃𝑃𝑟𝑟𝑧𝑧, 
𝑒𝑒𝑗𝑗𝑗𝑗(𝑧𝑧−𝑉𝑉𝑡𝑡)

𝑏𝑏3𝑐𝑐2𝑟𝑟
∑ 𝑒𝑒𝑗𝑗𝑛𝑛(𝜑𝜑−𝜔𝜔0𝑡𝑡) �𝑗𝑗𝑏𝑏𝑛𝑛𝐽𝐽𝑛𝑛 �𝑗𝑗𝑛𝑛𝑛𝑛

𝑟𝑟
𝑏𝑏
�𝐺𝐺𝐴𝐴 − 𝜈𝜈𝑛𝑛𝑛𝑛𝑟𝑟𝐽𝐽𝑛𝑛′ �𝜈𝜈𝑛𝑛𝑛𝑛

𝑟𝑟
𝑏𝑏
�𝐺𝐺𝐵𝐵�∞

𝑛𝑛,𝑛𝑛=1 = 𝑃𝑃𝜑𝜑𝑧𝑧, 
𝑒𝑒𝑗𝑗𝑗𝑗(𝑧𝑧−𝑉𝑉𝑡𝑡)

𝑏𝑏2𝑐𝑐2
∑ 𝑒𝑒𝑗𝑗𝑛𝑛(𝜑𝜑−𝜔𝜔0𝑡𝑡)𝐽𝐽𝑛𝑛 �𝑗𝑗𝑛𝑛𝑛𝑛

𝑟𝑟
𝑏𝑏
�𝐺𝐺𝑈𝑈∞

𝑛𝑛,𝑛𝑛=1 = 𝑃𝑃𝑧𝑧𝑧𝑧,      (12) 
 

Here 
𝐺𝐺𝑋𝑋 = 𝑓𝑓(𝑔𝑔𝑋𝑋)𝑋𝑋𝑛𝑛𝑛𝑛 + 𝑏𝑏2(2𝑗𝑗𝜔𝜔𝑋𝑋𝑛𝑛𝑛𝑛′ − 𝑋𝑋𝑛𝑛𝑛𝑛′′ ), 𝑋𝑋𝑛𝑛𝑛𝑛 = 𝑈𝑈𝑛𝑛𝑛𝑛,𝐴𝐴𝑛𝑛𝑛𝑛,𝐵𝐵𝑛𝑛𝑛𝑛 ,  
𝑓𝑓(𝑔𝑔𝑋𝑋) = 𝑐𝑐2(𝑔𝑔𝑋𝑋2 + 𝑏𝑏2𝑗𝑗2) − 𝑏𝑏2𝜔𝜔2 = 𝑏𝑏2(𝜔𝜔�2 − 𝜔𝜔2),  𝜔𝜔� = 𝑐𝑐

𝑏𝑏
�𝑔𝑔𝑋𝑋2 + 𝑏𝑏2𝑗𝑗2,    (13) 

𝑔𝑔𝑛𝑛𝑛𝑛 = 𝑗𝑗𝑛𝑛𝑛𝑛 for 𝑈𝑈𝑛𝑛𝑛𝑛 and 𝐴𝐴𝑛𝑛𝑛𝑛 and 𝑔𝑔𝑛𝑛𝑛𝑛 = 𝜈𝜈𝑛𝑛𝑛𝑛 for 𝐵𝐵𝑛𝑛𝑛𝑛. 
 
Note the relationship between frequency 𝜔𝜔 and longitudinal wavenumber: 𝜔𝜔 = 𝑗𝑗𝑘𝑘 + 𝑛𝑛𝜔𝜔0. 
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Combining the obtained equations with each other and using the well-known orthogonality 
conditions for the Bessel functions [12], we obtain equations for the amplitudes 𝑈𝑈𝑛𝑛𝑛𝑛,𝐴𝐴𝑛𝑛𝑛𝑛,𝐵𝐵𝑛𝑛𝑛𝑛: 

 
𝐺𝐺𝑋𝑋 = 𝑓𝑓(𝑔𝑔𝑋𝑋)𝑋𝑋𝑛𝑛𝑛𝑛 + 𝑏𝑏2(2𝑗𝑗𝜔𝜔𝑋𝑋𝑛𝑛𝑛𝑛′ − 𝑋𝑋𝑛𝑛𝑛𝑛′′ ) = Ϝ𝑋𝑋�𝑗𝑗𝐾𝐾𝑋𝑋𝑄𝑄(𝑡𝑡) + 𝑅𝑅𝑋𝑋𝑄𝑄′(𝑡𝑡)�, 𝑋𝑋 = 𝑈𝑈,𝐴𝐴,𝐵𝐵,       (14) 

 
where 

Ϝ𝑈𝑈 = −𝑞𝑞𝜇𝜇0
𝑐𝑐2

2𝜋𝜋2
𝐽𝐽𝑛𝑛 �𝑗𝑗𝑛𝑛𝑛𝑛

𝑎𝑎
𝑏𝑏�

𝐽𝐽𝑛𝑛+12 (𝑗𝑗𝑛𝑛𝑛𝑛) ,     Ϝ𝐴𝐴 = −𝑗𝑗𝑞𝑞𝜇𝜇0
𝑐𝑐2

2𝜋𝜋2
𝐽𝐽𝑛𝑛(𝑗𝑗𝑛𝑛𝑛𝑛 𝑎𝑎 𝑏𝑏⁄ )
𝑗𝑗𝑛𝑛𝑛𝑛2 𝐽𝐽𝑛𝑛+12 (𝑗𝑗𝑛𝑛𝑛𝑛),  

Ϝ𝐵𝐵 = −𝑞𝑞𝜇𝜇0
𝑏𝑏𝑎𝑎𝑐𝑐2𝜔𝜔𝑏𝑏

2𝜋𝜋2
𝜈𝜈𝑛𝑛𝑛𝑛

𝜈𝜈𝑛𝑛𝑛𝑛2 − 𝑛𝑛2
𝐽𝐽𝑛𝑛′ (𝜈𝜈𝑛𝑛𝑛𝑛 𝑎𝑎 𝑏𝑏⁄ )
𝐽𝐽𝑛𝑛2(𝜈𝜈𝑛𝑛𝑛𝑛)  

𝐾𝐾𝑈𝑈 = 𝑐𝑐2𝑗𝑗 − 𝑉𝑉𝜔𝜔, 𝑅𝑅𝑈𝑈 = 𝑉𝑉 
𝐾𝐾𝐴𝐴 = 𝑐𝑐2𝑗𝑗𝑛𝑛𝑛𝑛2 − 𝑏𝑏2𝑛𝑛𝜔𝜔𝑏𝑏𝜔𝜔, 𝑅𝑅𝐴𝐴 = 𝑏𝑏2𝑛𝑛𝜔𝜔𝑏𝑏 

𝐾𝐾𝐵𝐵 = 𝜔𝜔, 𝑅𝑅𝐵𝐵 = −1     (15) 
 
For the amplitudes of the magnetic components of the field (wave equation (4)) equations are 

obtained with a structure identical to (14). In this case, we have: 
 

Ϝ𝑊𝑊 = 𝑗𝑗 𝑞𝑞
2𝑎𝑎𝑐𝑐𝜔𝜔𝑏𝑏

𝑏𝑏𝜀𝜀0
𝜈𝜈𝑛𝑛𝑛𝑛3

𝜈𝜈𝑛𝑛𝑛𝑛2 − 𝑛𝑛2
𝐽𝐽𝑛𝑛′ (𝜈𝜈𝑛𝑛𝑛𝑛 𝑎𝑎 𝑏𝑏⁄ )
𝐽𝐽𝑛𝑛2(𝜈𝜈𝑛𝑛𝑛𝑛) ,   𝐾𝐾𝑤𝑤 = 1, 𝑅𝑅𝑊𝑊 = 0,   𝑔𝑔𝑊𝑊 = 𝜈𝜈𝑛𝑛𝑛𝑛 

Ϝ𝐶𝐶 = 𝑗𝑗𝑞𝑞
2𝑐𝑐
𝜀𝜀0
𝑗𝑗𝑛𝑛𝑛𝑛2 𝑉𝑉 − 𝑏𝑏2𝑗𝑗𝑛𝑛𝜔𝜔𝑏𝑏

𝐽𝐽𝑛𝑛−12 (𝑗𝑗𝑛𝑛𝑛𝑛)
𝐽𝐽𝑛𝑛(𝑗𝑗𝑛𝑛𝑛𝑛 𝑎𝑎 𝑏𝑏⁄ )

𝑗𝑗𝑛𝑛𝑛𝑛2
,   𝐾𝐾𝐶𝐶 = 1, 𝑅𝑅𝐶𝐶 = 0, 𝑔𝑔𝐶𝐶 = 𝑗𝑗𝑛𝑛𝑛𝑛 

Ϝ𝐷𝐷 = −𝑞𝑞 2𝑎𝑎𝑏𝑏𝑐𝑐𝑗𝑗𝜔𝜔𝑏𝑏
𝜀𝜀0

𝜈𝜈𝑛𝑛𝑛𝑛
𝜈𝜈𝑛𝑛𝑛𝑛2 −𝑛𝑛2

𝐽𝐽𝑛𝑛′ (𝜈𝜈𝑛𝑛𝑛𝑛𝑎𝑎 𝑏𝑏⁄ )
𝐽𝐽𝑛𝑛2(𝜈𝜈𝑛𝑛𝑛𝑛) ,   𝐾𝐾𝐷𝐷 = 1, 𝑅𝑅𝐷𝐷 = 0,   𝑔𝑔𝑊𝑊 = 𝜈𝜈𝑛𝑛𝑛𝑛        (16) 

 
Equation (14) is a second order differential equation. Its complete solution can be composed 

of a particular solution of an inhomogeneous equation and a general solution of a homogeneous 
equation (with zero right-hand side). 

The solution of the inhomogeneous equation (14) can be obtained by representing the 
amplitudes 𝑋𝑋𝑛𝑛𝑛𝑛 and function 𝑄𝑄(𝑡𝑡) through the images 𝑋𝑋�𝑛𝑛𝑛𝑛 and 𝑄𝑄�  of the Laplace transform in time: 

 
𝑋𝑋𝑛𝑛𝑛𝑛 = ∫ 𝑈𝑈�𝑛𝑛𝑛𝑛𝑒𝑒−𝛼𝛼𝑡𝑡𝑑𝑑𝑑𝑑

∞
0 ,   𝑄𝑄(𝑡𝑡) = ∫ 𝑄𝑄�𝑒𝑒−𝛼𝛼𝑡𝑡𝑑𝑑𝑑𝑑∞

0    (17) 
 
The connection between the Laplace images of the amplitude and the function (15) is obtained 

after substituting (17) into (14) and equating the integrands in the left and right sides of the resulting 
equation: 

𝑋𝑋�𝑛𝑛𝑛𝑛(𝑑𝑑) = Ϝ𝑋𝑋𝑄𝑄�(𝑑𝑑)𝑃𝑃𝑋𝑋(𝑑𝑑)        (18) 
 

where 
𝑃𝑃𝑋𝑋(𝑑𝑑) = 𝑗𝑗𝐾𝐾𝑋𝑋−𝛼𝛼𝑅𝑅𝑋𝑋

𝑓𝑓(𝑔𝑔𝑋𝑋)−𝑏𝑏2(2𝑗𝑗𝜔𝜔𝛼𝛼+𝛼𝛼2)        (19) 
 
The time dependence of the amplitude is determined using the inverse Laplace transform from 

the coordinate 𝑑𝑑 to the time domain. Thus, for all six components, the solution has an identical 
form: 

𝑋𝑋(𝑡𝑡) = Ϝ𝑋𝑋ℒ𝑡𝑡−1�𝑄𝑄�(𝑑𝑑)𝑃𝑃𝑋𝑋(𝑑𝑑)�,   𝑋𝑋 = 𝑈𝑈,𝐴𝐴,𝐵𝐵,𝑊𝑊,𝐶𝐶,𝐷𝐷     (20) 
 

An explicit solution can be obtained from (20) by substituting in it the Laplace image 𝑄𝑄�(𝑑𝑑) of 
a specific function 𝑄𝑄(𝑡𝑡) of the time dependence function of charge accumulation. 
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3. The radiation of injected particle 
 

Now consider of the process of injection of the case of a single point particle arising at the 
time instant 𝑡𝑡 = 0  at the point 𝑟𝑟 = 𝑏𝑏, 𝑧𝑧 = 0,𝜑𝜑 = 0  inside the waveguide and being drawn into 
motion along a helical trajectory by external magnetic fields. The phenomenon of instantaneous 
appearance of a point charged particle is described by the introduction of a step function into the 
expressions (1), (2) for charges and currents instead of function 𝑄𝑄(𝑡𝑡): 𝑄𝑄(𝑡𝑡) = 𝜒𝜒(𝑡𝑡), where 𝜒𝜒(𝑡𝑡) = 0 
at 𝑡𝑡 < 0 and 𝜒𝜒(𝑡𝑡) = 1 at 𝑡𝑡 ≥ 0. The Laplace image of a step function is: 

 
𝜒𝜒�(𝑑𝑑) = ℒ𝛼𝛼{𝜒𝜒(𝑡𝑡)} = 𝑑𝑑−1        (21) 

 
and the derivative of the step function at 𝑡𝑡 > 0 is equal to zero and 𝑅𝑅𝑋𝑋 = 0 in (19). Therefore, from 
(20) we have: 

 

𝑋𝑋𝑁𝑁(𝑡𝑡) = 𝑗𝑗 Ϝ𝑁𝑁𝐾𝐾𝑁𝑁
𝑓𝑓(𝑔𝑔𝑁𝑁) �1 − 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡 �𝑐𝑐𝑟𝑟𝑐𝑐(𝜔𝜔�𝑁𝑁𝑡𝑡) + 𝑗𝑗 𝜔𝜔

𝜔𝜔�𝑁𝑁
𝑐𝑐𝑠𝑠𝑛𝑛(𝜔𝜔�𝑁𝑁𝑡𝑡)��    (22) 

 
The first term in (44) coincides with the expression for the stationary solution in an infinite 

waveguide 
We represent the factor 𝑏𝑏2 𝑓𝑓(𝑔𝑔𝑁𝑁)⁄  in the form 
 

𝑏𝑏2

𝑓𝑓(𝑔𝑔𝑁𝑁) = 𝑢𝑢1 + 𝑢𝑢2          (23) 
 
Here 

𝑏𝑏2

𝑓𝑓(𝑔𝑔𝑁𝑁) = 𝑢𝑢0 = 1
(𝑗𝑗1−𝑗𝑗2)(𝑗𝑗−𝑗𝑗1) −

1
(𝑗𝑗1−𝑗𝑗2)(𝑗𝑗−𝑗𝑗2)  

𝑢𝑢1 = 𝑗𝑗
𝑗𝑗1(𝑗𝑗1−𝑗𝑗2)(𝑗𝑗−𝑗𝑗1) −

𝑗𝑗
𝑗𝑗2(𝑗𝑗1−𝑗𝑗2)(𝑗𝑗−𝑗𝑗2)  

𝑢𝑢2 = − 1
𝑗𝑗1(𝑗𝑗1−𝑗𝑗2) + 1

𝑗𝑗2(𝑗𝑗1−𝑗𝑗2) = 1
𝑗𝑗1𝑗𝑗2

          (24) 

𝑗𝑗1,2 =
𝑏𝑏𝑉𝑉𝑛𝑛𝜔𝜔0±𝑐𝑐�𝑏𝑏2𝑛𝑛2𝜔𝜔0

2−𝑔𝑔𝑁𝑁
2 (𝑐𝑐2−𝑉𝑉2)

𝑏𝑏(𝑐𝑐2−𝑉𝑉2)   
 

𝑗𝑗1,2 are the roots of equation 𝑓𝑓(𝑔𝑔𝑁𝑁) = 0 with respect to 𝑗𝑗. 
Now (22) can be rewritten as: 
 

𝑋𝑋𝑁𝑁(𝑡𝑡) = 𝑗𝑗Ϝ𝑁𝑁𝐾𝐾𝑁𝑁𝑢𝑢0 − 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡𝑍𝑍(𝑗𝑗)𝑢𝑢1 − 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡𝑍𝑍(𝑗𝑗)𝑢𝑢2 + 𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡𝑍𝑍0(𝑗𝑗)   (25) 
with 

𝑍𝑍(𝑗𝑗) = 𝑗𝑗Ϝ𝑁𝑁𝐾𝐾𝑁𝑁 �𝑐𝑐𝑟𝑟𝑐𝑐(𝜔𝜔�𝑁𝑁𝑡𝑡) + 𝑗𝑗 𝜔𝜔
𝜔𝜔�𝑁𝑁

𝑐𝑐𝑠𝑠𝑛𝑛(𝜔𝜔�𝑁𝑁𝑡𝑡)�       

𝑍𝑍0(𝑗𝑗) = �𝐴𝐴0(𝑗𝑗)𝑐𝑐𝑟𝑟𝑐𝑐(𝜔𝜔�𝑁𝑁𝑡𝑡) + 𝐵𝐵0(𝑗𝑗)𝑐𝑐𝑠𝑠𝑛𝑛(𝜔𝜔�𝑁𝑁𝑡𝑡)�          (26) 
 
In (25), a general solution of the homogeneous equation for amplitudes (with zero right-hand 

side) 
𝐺𝐺𝑋𝑋 = 𝑓𝑓(𝑔𝑔𝑋𝑋)𝑋𝑋𝑛𝑛𝑛𝑛 + 𝑏𝑏2(2𝑗𝑗𝜔𝜔𝑋𝑋𝑛𝑛𝑛𝑛′ − 𝑋𝑋𝑛𝑛𝑛𝑛′′ ) = 0       (27) 

 
with indefinite so far coefficients 𝐴𝐴0(𝑗𝑗) and 𝐵𝐵0(𝑗𝑗) is added. 

The transition to the space-time domain is accomplished using the inverse Fourier transform 
versus 𝑗𝑗: 
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𝑋𝑋𝑁𝑁(𝑡𝑡) = 𝑋𝑋𝑁𝑁
(0)(𝑡𝑡) + 𝑋𝑋𝑁𝑁

(1)(𝑡𝑡) + 𝑋𝑋𝑁𝑁
(2)(𝑡𝑡) + 𝑋𝑋𝑁𝑁

(3)(𝑡𝑡)      (28) 
 

with 
𝑋𝑋𝑁𝑁

(0)(𝑡𝑡) = 𝑗𝑗Ϝ𝑁𝑁 ∫ 𝐾𝐾𝑁𝑁𝑢𝑢0𝑒𝑒𝑗𝑗(𝜔𝜔𝑡𝑡−𝑗𝑗𝑧𝑧)𝑑𝑑𝑗𝑗∞
−∞ ,   𝑋𝑋𝑁𝑁

(1)(𝑡𝑡) = ∫ 𝑍𝑍(𝑗𝑗)𝑢𝑢1𝑒𝑒−𝑗𝑗𝑗𝑗𝑧𝑧𝑑𝑑𝑗𝑗
∞
−∞   

𝑋𝑋𝑁𝑁
(2)(𝑡𝑡) = ∫ 𝑍𝑍(𝑗𝑗)𝑢𝑢2𝑒𝑒−𝑗𝑗𝑗𝑗𝑧𝑧𝑑𝑑𝑗𝑗

∞
−∞ , 𝑋𝑋𝑁𝑁

(3)(𝑡𝑡) = ∫ 𝑍𝑍0(𝑗𝑗)𝑒𝑒−𝑗𝑗𝑗𝑗𝑧𝑧𝑑𝑑𝑗𝑗∞
−∞      (29) 

 
The integrand of 𝑋𝑋𝑁𝑁

(0)(𝑡𝑡) is an analytic function on the entire complex plane 𝑗𝑗 and, with the 
exception of points 𝑗𝑗 = 𝑗𝑗1 and 𝑗𝑗 = 𝑗𝑗2, corresponding to two simple poles lying on the real axis. Its 
value (in the sense of the principal value) is determined by the residues of these poles in the usual 
way [7]. The integrand of 𝑋𝑋𝑁𝑁

(1)(𝑡𝑡) has the same poles, but it is not an analytic function. The results 
of integration along the edges of the cuts emanating from the branch points 𝑗𝑗 = ±𝑗𝑗 𝑔𝑔𝑁𝑁 𝑏𝑏⁄  should be 
also added to the contributions from the poles to its value. Asymptotically this contribution can be 
calculated by the saddle point or stationary phase method [13] It is easy to see that the contribution 
from the poles to the integral 𝑋𝑋𝑁𝑁

(1)(𝑡𝑡) completely vanishes the integral 𝑋𝑋𝑁𝑁
(0)(𝑡𝑡), and the additional 

contribution of the integral 𝑋𝑋𝑁𝑁
(1)(𝑡𝑡) (calculated, for example, by the stationary phase method), is 

compensated by the appropriate selection of the amplitudes 𝐴𝐴0(𝑗𝑗)  and 𝐵𝐵0(𝑗𝑗)  in the integral 
𝑋𝑋𝑁𝑁

(3)(𝑡𝑡). Only the third term 𝑋𝑋𝑁𝑁
(2)(𝑡𝑡) in (28) remains nonzero. It does not contain poles, but its 

integrand is not an analytic function either. This integral 
 

𝑋𝑋𝑁𝑁
(2)(𝑡𝑡) = 𝑗𝑗Ϝ𝑈𝑈

𝑗𝑗1𝑗𝑗2
∫ 𝐾𝐾𝑈𝑈 �𝑐𝑐𝑟𝑟𝑐𝑐(𝜔𝜔�𝑁𝑁𝑡𝑡) + 𝑗𝑗 𝜔𝜔

𝜔𝜔�𝑁𝑁
𝑐𝑐𝑠𝑠𝑛𝑛(𝜔𝜔�𝑁𝑁𝑡𝑡)� 𝑒𝑒−𝑗𝑗𝑗𝑗𝑧𝑧𝑑𝑑𝑗𝑗

∞
−∞    (30) 

 
can be calculated explicitly. In particular, for the longitudinal electric component 𝐸𝐸𝑧𝑧 we have: 

 
𝐸𝐸𝑧𝑧 = 𝑗𝑗Ϝ𝑈𝑈

𝑗𝑗1𝑗𝑗2
�ℳ0𝐽𝐽0 �

𝑗𝑗𝑛𝑛𝑛𝑛
𝑏𝑏
√𝑐𝑐2𝑡𝑡2 − 𝑧𝑧2� + ℳ1𝐽𝐽1 �

𝑗𝑗𝑛𝑛𝑛𝑛
𝑏𝑏
√𝑐𝑐2𝑡𝑡2 − 𝑧𝑧2��    (31) 

 
for 𝑐𝑐2𝑡𝑡2 > 𝑧𝑧2 and 𝐸𝐸𝑧𝑧 = 0 for 𝑐𝑐2𝑡𝑡2 < 𝑧𝑧2. The latter is due to the time delay of radiation. 

Where, 

ℳ0 = −𝑗𝑗
𝜋𝜋
𝑐𝑐
�𝑉𝑉𝑛𝑛2𝜔𝜔0

2 − 𝑧𝑧(𝑐𝑐2𝑡𝑡 + 𝑗𝑗𝑛𝑛𝑛𝑛𝑉𝑉𝑧𝑧)
𝑗𝑗𝑛𝑛𝑛𝑛(𝑐𝑐2 − 𝑉𝑉2)
𝑏𝑏2(𝑐𝑐2𝑡𝑡2 − 𝑧𝑧2)� 

ℳ1 =
ℜ1 + 𝑗𝑗ℜ2

𝑏𝑏𝑐𝑐(𝑐𝑐2𝑡𝑡2 − 𝑧𝑧2)3 2⁄  

ℜ1 = 𝑛𝑛𝜋𝜋𝜔𝜔0(𝑐𝑐2𝑡𝑡2 − 𝑧𝑧2)�𝑉𝑉(𝑗𝑗𝑛𝑛𝑛𝑛𝑉𝑉𝑧𝑧 + 𝑐𝑐2𝑡𝑡) − 𝑧𝑧𝑗𝑗𝑛𝑛𝑛𝑛(𝑐𝑐2 − 𝑉𝑉2)�    
ℜ2 = −𝜋𝜋(𝑐𝑐2 − 𝑉𝑉2)�𝑧𝑧(𝑗𝑗𝑛𝑛𝑛𝑛𝑉𝑉𝑧𝑧 + 𝑐𝑐2𝑡𝑡) + 𝑐𝑐2𝑡𝑡(𝑗𝑗𝑛𝑛𝑛𝑛𝑉𝑉𝑡𝑡 + 𝑧𝑧)�  (32) 

 
During of calculation (31) the following relation [14] was used 
 

∫ 𝑠𝑠𝑠𝑠𝑛𝑛�𝑏𝑏√𝑎𝑎2+𝑥𝑥2�
√𝑎𝑎2+𝑥𝑥2

∞
0 𝑐𝑐𝑟𝑟𝑐𝑐(𝑥𝑥𝑥𝑥)𝑑𝑑𝑥𝑥 = 1

2
�𝜋𝜋𝐽𝐽0�𝑎𝑎�𝑏𝑏

2 − 𝑥𝑥2�,   0 < 𝑥𝑥 < 𝑏𝑏
0,          𝑏𝑏 < 𝑥𝑥 < ∞

    (33) 

 
In contrast to the case of homogeneous motion in infinite waveguide, in the case under 

consideration, the waveguide is filled with energy as the particle deepens into the waveguide. The 
front of the propagated wave is determined by equality 𝑐𝑐𝑡𝑡 = 𝑧𝑧. Note that the field component (31) 
at 𝑐𝑐𝑡𝑡 → 𝑧𝑧 tends to a finite limit. 
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For the presence of radiation at a certain observation point 𝑟𝑟,𝜑𝜑, 𝑧𝑧 inside the waveguide, as 
already noted, the principle of causality must be observed, which requires the following relations to 
be satisfied: 

 
𝑙𝑙1
𝑉𝑉

+ 𝑙𝑙2
𝑐𝑐

= 𝑡𝑡, 𝑙𝑙1 + 𝑙𝑙2𝑐𝑐𝑟𝑟𝑐𝑐𝑑𝑑 = 𝑧𝑧      (34) 
 

Here 𝑙𝑙1 is the distance along the z axis, indicating the position of the particle at a certain moment of 
time 𝑡𝑡′ < 𝑡𝑡, at which its radiation reaches the point of observation 𝑟𝑟,𝜑𝜑, 𝑧𝑧 at the moment of time 𝑡𝑡. 
𝑙𝑙2 denotes the distance between the particle and the point of observation, which is passed by the 
radiation emanating from the particle at time 𝑡𝑡′ and reaching the point of observation at time 𝑡𝑡; 𝑑𝑑 is 
the angle between the line connecting the particle and the observation point and the axis of the 
waveguide. 

From (52) it follows: 
 

𝑙𝑙1 = 𝑉𝑉(𝑐𝑐𝑡𝑡 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼−𝑧𝑧)
𝑐𝑐 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼−𝑉𝑉

, 𝑙𝑙2 = 𝑐𝑐(𝑧𝑧−𝑡𝑡𝑉𝑉)
𝑐𝑐 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼−𝑉𝑉

      (35) 
 
Important conclusions follow from (35) under conditions 𝑙𝑙1,2 > 0: (a) forward radiation is 

possible if 𝑧𝑧 > 𝑡𝑡𝑉𝑉 , (b) the radiation is concentrated near the axis of the waveguide within the 
conical angle 𝑑𝑑 ≤ 𝑐𝑐𝑠𝑠𝑛𝑛 ��2 (1 − 𝑉𝑉2 𝑐𝑐2⁄ )⁄ ,�1 −  (𝑧𝑧 𝑐𝑐𝑡𝑡⁄ )2�. 

Frequency characteristics of radiation can be determined by analyzing the integrand in 
formula (30). For an arbitrary value of the function 𝑓𝑓(𝑗𝑗𝑛𝑛𝑛𝑛), it is a rapidly oscillating function, while 
with 𝑓𝑓(𝑗𝑗𝑛𝑛𝑛𝑛) = 0  the oscillations remain only in phase and its modulus slowly varied with 
frequency. For this reason, its frequency distribution is characterized by sharp peaks at frequencies 
determined by equation 𝑓𝑓(𝑗𝑗𝑛𝑛𝑛𝑛) = 0. Thus, the resonant frequencies remain the same as in the 
stationary motion of a particle in an infinite waveguide [7]. Obtained formula (31) describes 
narrow-directed and narrow-band radiation. The process of the emergence and subsequent 
propagation of an arbitrary bunch of uniform length 𝑡𝑡0 can be described using the convolution of 
the expression for the field of a point particle (31) with the charge longitudinal distribution function 
𝑓𝑓𝑧𝑧(𝑡𝑡) in the bunch: 

 
𝐸𝐸𝑧𝑧𝑏𝑏(𝑡𝑡) = ∫ 𝑓𝑓𝑧𝑧(𝑡𝑡 − 𝑡𝑡′)𝐸𝐸𝑧𝑧(𝑡𝑡′)𝑑𝑑𝑡𝑡′𝑡𝑡𝑢𝑢

0      (36) 
 

Here 𝑡𝑡𝑢𝑢 = 𝑡𝑡 at the formation of a bunch and 𝑡𝑡𝑢𝑢 = 𝑡𝑡0 at its completion. 
For brevity, we obtained an explicit expression only for the longitudinal electrical component 

(31). Similarly, (using formulas (15) and (16)), the rest of the components can be calculated. 
 
4. Conclusions 
 

The results of this work make it possible to study in more detail the processes of emission of 
bunches in a helical undulator combined with waveguide, occurring during injection, subsequent 
propagation, and after leaving the open end (open cross-section) of the waveguide. They will 
contribute to the creation of mathematical models of the operation of an undulator-waveguide 
structure close to reality. The results related to the time-varying charge of a particle can find 
application, for example, when taking into account the loss of particles in a bunch arising from 
scattering on the walls of the waveguide and scattering on molecules of the residual gas. 
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