ЭНЕРГЕТИКА

л. т. кулоян, л. с. оганесян

К ВОПРОСУ ОБ ЭНЕРГЕТИЧЕСКОМ ИСПОЛЬЗОВАНИИ СИНТЕЗ - ГАЗА

В процессе получения ацетилена из природного газа одновременно в качестве газового отхода получается горючий газ или, как принято называть, синтез газ. По данним Ереванского завода СК синтез газ имеет следующий состав: $H_a=59.64\%$, CO=28.12%, $CH_4=5.43\%$, $CH_4=5.43\%$, $C_2H_4=0.33\%$, $C_2H_4=0.25\%$, $C_2H_4=0.$

Выход синтез газа на 1 m ацетилена составляет порядка 100(х) и.к.³. В связи с освоением новой технологии производства ацетилена на базе природного газа ожидается значительное увеличение выхода синтез газа. Однако в ближайшей и, вероятно, даже в дальней перспективе химическая промышленность вряд ли сумеет полностью реализовать (в качестве химического сырья) переработку всей массы этого газа. Вероятно, значительная часть синтез газа будет пелользована в качестве топлива.

Насколько авторам известию у нас в стране не имеется опыта сжигания синтез газа. На основании теплотехнических расчетов в статье делается попытка оценки синтез газа как горючего и предладаются пути его использования.

В табл. 1 приведены вычисленные авторами теплотехнические зарактеристики синтез газа, а также для природного газа и мазута Азербайджанских месторождений.

Таблица 1

Наименование величин	Обозна- чение	Природный га. ккал кж ²⁸	Cuntes ras KKOA HM2*	Мазут ма- лосернистый кк ал кг *		
Нязшая теплота горения	QH	7960	2920	9310		
Творезически необходимый для горения объем воздуха	Ve	8,7	2,68	10,3		
Теоретический объем водяных па-	V _{H,0}	2,0	0,77	1.34		
Теоретический объем продуктов го- рення	ν,	9,92	3,29	11,1		

^{• &}lt;mark>иж² — для газо</mark>образного топлива, к*Г* — для жидкого.

Как и следовало ожидать, для горения низкокалорийного синтез газа требуется меньшее количество воздуха. Соответственно более, чем в три раза по сравнению с природным газом и мазутом сокращается выход продуктов сгорания.

Для опенки эффективности сжигания топлива важное значение имеет жаропроизводительность последнего [1], т. е. максимально нозможная температура, развиваемая при полном сгорании топлива в теоретически необходимом для горения количестве воздуха без подогрева воздуха и топлива. Максимальная возможная температура может быть вычислена по формуле:

$$= \frac{Q_{\rm H}}{V_{\rm RO} C_{\rm RO} - V_{\rm H,0} C_{\rm H,0} - V_{\rm N} C_{\rm N}}, \tag{1}$$

гле $V_{80} = V_{60} + V_{80}$ — суммарный объем двуокиси углерода и сернистого газа в $n m^3 \kappa \Gamma$ или $n m^4 (m^4)$

 $V_{\rm H_2O}=$ объем водяных наров в HM^1 и или $\mathit{HM}^3/\mathit{RF}$; $V_{\rm N_2}=$ объем азота;

 $C_{\text{RO}_{i}}$, $C_{\text{II},\text{O}_{i}}$, $C_{\text{N}_{i}}$ — соответственно средние объемные тепловикости и интервале от 0° до $t_{\text{маке}}$.

Значения с определенные методом последовательного приближения на основании (1), приведены в табл. 2. На таблицы видно, что жаропроизводительность для синтез газа выше, чем у природного газа (на 104°С) и мазута (на 60°С). Это можно объяснить относительно малой величиной объема продуктов горения, выделяемых пра сжигании синтез газа. Высокая жаропроизводительность синтез газа объясияется большим содержанием водорода.

Для проектирования, выбора и эксплуатации горелочных устройств необходимо знание концентрационных пределов воспламенения и скорости распространения пламени. Пределы воспламенени (верхний и нижний) по концентрации горючей смеси можно определить, пользуясь известной формулой Ле-Шателье [2]

$$L_{r} = \frac{r_{1} + r_{2} + r_{3} + \cdots}{\frac{r_{1}}{l_{1}} + \frac{r_{2}}{l_{2}} + \frac{r_{2}}{l_{3}} + \cdots}} + (2)$$

глу r_1, r_2, r_3 — процентные содержания компонентов и горючей смеск I_1, I_2, I_3 — верхиий и нижний пределы поспламенения по концентрации для смеси данного компонента с воздухом.

С учетом балластных примесей окончательные пределы воспламенения уточняются по выражению:

$$L = L \frac{\left(1 + \frac{1}{1 - 5}\right) \cdot 100}{100 \cdot L \cdot \frac{1}{1 - 5}} \tag{3}$$

где L. — предел воспламенения (верхний или нижний) газовой смеси, содержащей балластице примеси;

4 — содержание балластных примесей в долях единици.

Горение горючих газов, представляющих собой сложные смеси вростых газов, можно рассматривать как одновременное и независимое горение нескольких простых смесей индивидуальных (элементарных) газов с воздухом. Согласно этому положению, скорость распротранения вламени для смеси сложного гази с поздухом, обладающей таксимальной скоростью распространения пламени, можно определить по формуле:

$$L = L \frac{r_1 u_1 - r_2 u_2 - r_3 u_3}{l_2 - l_3 + l_4} - \frac{r_4 u_3}{l_4 - l_4}$$

$$(4)$$

 тде U — максимальная скорость распространения пламени сложной газовоздушной смеси (м сек);

> содержание сложного газа в смеси, дающей макевмальную скорость распространения пламени, и процептах;

г. г. г. содержание простых газов в техническом газе, в процентах;

и₁, и₂, и₃ максимальные скорости распространения пламени простых газов в газовоздушной смеси в лисек;

 $l_1,\ l_2,\ l_3$ — содержание простых газон в смесн с воздухом, дающее максимальную скорость распространения пламени, в процентах.

При забалластировании газа азотом и углекислотой снижение екорости распространения пламени учитывается поправочным коэффициентом [3]

$$a = \frac{100 - N - 1.2 \, \text{CO}_9}{100} \tag{5}$$

Действительная скорость распространения пламени будет:

$$U_c = \pi \cdot U_c$$
 (6)

Соответствующие данные расчета, выполненные согласно выражениям (1): (6), приведены в табл. 2.

Таблика 2

Наименование велитии	Размерность	Elpopotavicii:	Carry ray-	Maayi
Маропроизводительность голдина -	c.	1990	2160	2100
HRZIIII	a	5,4 [6,4	-9	-
скорость распространения пламени	W.C:W	1012	3 18	-

Как видно из табл. 2, нижние концентрационные пределы попламенения для природного и синтез газа имеют почти одинаковыначения. Верхний концентрационный предел для синтез газа по сравнению с природным газом вычительно више. Эти данные виолизакономерны и отражают прямо плияние основных горючих компонентон сраниниземых газовотлушных смесен: мезны и водорода. Дл последних, согласно [2], нижние пределы поспламенения рави 4—— а перхине 15—74° о.

Таким образом, и отличие от природного глав воспламененые смесн синтез газа с но духом позможне и иничительно более широком диапалове конпентрации (особенно, торону богатых смесей) Пасм объеком синтез газа почти в нять раз больше, чем у природного газа, что объясияется весьма высокой тенлопроводностью водородно сравнению с другим сорьочим газом.

По петагочный сост слорили распространения пламени может принести в нарушение пормал пого режима работы горелок и свижению их клод,, а иногла лаже в преждевременному ныходу горелок из строя.

Отдельное сжигание синтер газа и топках и нечих окажеми затруднительным из-за его ин об еплотворности (теплоты горения и большой скорости распрострачения пламени.

Низкая калорийность синт в газа не может сильно влиять из увеличение габаритов газогорелочного устройства, так как для дего горения требуется значительно меньше воздуха (табл. 1), а большие скирости распространения пламени потребуют соответственно увеличить скорость выхода газовоздушной смеси на горелки.

Перспективным является совместное сжигание природного газа с спитез газом. При этом технология сжигания может базироваться на двух различных принципох:

я) сжигание каждого газа осуществляется раздельно соответствующими горалками, рисположения чи по яругам топочного устранства. Оченидно, такой при по жигания возмужно редлизогать только и мощных эпергетических полаж;

6) сжитание обоих газов осуществляется после их смешивания. Расчеты показали, что наиболо выпланых параметров горения можно добиться при их смешивания в проценции 1:1.

Основные величины, характери ующие теплоценность и процесс горения такой смеси, имеют следующие значения:

пизи на теплота горения — 5440 жкал или³, теоре ичесля и лух с и лия — пред и и лух с и лия продукт и горения — пред инфактивности и 2040 С; предели посразменения — 5,3 и 20,4 с слорость распространения илимент — 11 г. и слу ...

Как во калорийности, так и по ожидаемому температурному уровню горения и скорости распространения пламени, смесь синтез газа с природным газом окажется более приемлемой, чем отдельное сжигание синтез газа.

Смешивание горючих можно осуществить как в самих горедках, так в вне их централизованным порядком.

В том и другом случае его осуществление ярял ли будет связано с большими трудностями.

С увеличением доли синтез газа в смеси теплота сгорания последией будет снижаться, а концентрационные пределы воспламенения будут расширяться. При необходимости регулирование как тонливного режима котельной (или печи), так и наропроизводительности (или теплопроизводительности печи) можно осуществить, кроме всего прочего, изменением соотношения в смеси обонх горючих газов. В определениом диапазоне этого соотношения работа котельной тонки или промышлениой печи окажется надежной и устойчивой.

Нормальная работа топливосжигающих установок в первую очередь зависит от режима и надежности топливоснабжения. В этом симсле наиболее важими является поддержание заданного режима поступления синтез газа к топливосжигающим установкам. Не менее важным является также поддержание состава газа в заданных пределах.

Вопросы рационального использования синтез газа актуальны особенно для Армянской ССР, где внедрение новой технологии пропства ацетилена сопровождается выходом все возрастающей массы синтез газа.

В настоящее время завершаются практические мероприятия для использования синтез газа в котлах Ереванской ТЭЦ. В дальнейшем это горючее найдет применение и в других топливосжигающих установках, территориально близко расположенных к объектам производства ацетилена.

Как известно, в течение большей части года Еренанская ТЭЦ работает на бакинском мазуте. Насколько нам известно, еще не ниеется опыта совместного сжигания мазута и снитез газа. Поэтому извользование синтез газа в этих котлах будет сопровождаться, нижно, с некоторыми трудностями. Для своевременного осуществления исех практических мероприятий, связанных с эффективным использованием синтез газа в качестве топлива, необходимо уже сейчас приступить к интенсивному изучению всего комплекса вопросов, связанных с его сжиганием: режим выхода синтез газа: возможные пределы изменения его состава; транспорт и распределение синтез газа: технические аспекты предварительного смешивания синтез газа с другими видами топлива; вопросы техники безопасности при транспорте и использовании этого газа, связанные с большим содержанием водорода и др.

Ереванский политехнический институт им. К. Маркса

լ, ջ, դոհլոցան, լ. Ս. Հովշաններնցան

ՍԻՆԹԵԶ ԳԱԶԻ ԷՆԵՐԳԵՏԻԿ ՕԳՏԱԳՈՐԾՄԱՆ ՀԱՐՑԻ ՇՈՒՐՋԸ

Unihnhntd

Բնական գազի հիման վրա ացետիլենի արտադրության նոր տեխնոլոդիայի ներդրման կապակցությամբ խիստ կարևոր է կողմնակի ելանյութ հանդիսացող սինինգ գազի օգտադործման հարցի լուծումը։

Ջերմատեխնիկական հաշվարկների հիման վրա հոդվաձում <mark>արվում և</mark> սինթեզ գազի գնահատականը որպես վառելիքի և բննարկվում է նր<mark>ա օզ</mark>տադործման առավել նպատականարմար ուղիները։

Հնդ հանրացնելով ստացված արդյունքները. Դեղինակննրը հանգում են եղրակացության, որ այրժան ցածր ջերժության ու բոցի տարածժան ժեծ արագության պատճառով սինքնեղ դազի այրուժը կապված է զգալի դժվարությունների հետ։ Ավելի հետանկարային է սինքնեղ դազի և բնական գազի համատեղ այրուժը, որը կարող է իրականացվել երկու եղանակով. ա) յուրաքանչյուն դազի այրուժն իրականացվում է մյուսից անջատ և թ) երկու դաղերի այրուժն իրականացվում է մյուսից անջատ և թ) երկու դաղերի այրուժն հրականացվում է նրանց նախապես խառնելուց հետո։ Հաշվարկները ցույց են տալիս, որ ավելի նպատակահարժար է սինքնղ դաղի և բնական դազի 1ւ1 հաշաքերությամը խառնուրդի այրումը։

որվածում նվարկված են այն հիմնական իներիրները, որոնց լուծում կապամոմի սիններ գարի այրման բարձր արդյունավնաունիյունը։

ЛИТЕРАТУРА

- 1. Равич М. Б. Упрощенная методика теплотехнических расчетов. М., 1961.
- 2. Кнорре Г. Ф. Топочные процессы. Госунергоиздат, 1951.
- 3. Стаскович Н. Л. Газоснабжение городов, Госэнергонздат, т. 1, 11-1954.
- 4 Литрин Л. Н. Теория горения и изрыва. Изд. МГУ, 1957.
- 5. Тепловой расчет котельных агретатов (порнативный метод). Готэнер: оподат. 1955.