ЭН1 РГЕТИКА

н. г. бархуларян

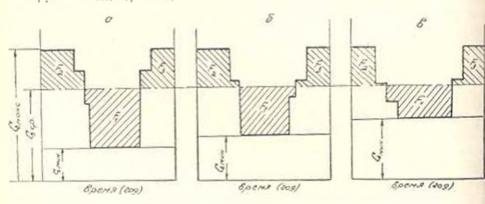
К ВОПРОСУ ОПРЕДЕЛЕНИЯ ПОКАЗАТЕЛЕЙ. ХАРАКТЕРИЗМЮЩИХ РЕЖИМ И РЕГУЛИРОВАНИЕ ГАЗОПОТРЕБЛЕНИЯ

Регулирование неравномерности газопотребления обычно возлагается на тенловые электростанции (ТЭС), которые в связи с этим становятся буферными потребителями, потребляющими в течение го-💵 два вида топлива: основной уголь или мазут и природный газ, который сбрасывается им в летний период. Гакое положение объясняется неравномерным потреблением газа в народном хозяйстве, а также отсутствием газохранилии достаточных объемов. Однако независимо от выбранного способа регулирования режима газопотребления двойным топливоснабжением или сооружением подземного газотранилища возникает необходимость изучения режима потребления газа. В подземных хранилишах стоимость хранения газа зависит от многих и самых различных факторов: расстояния хранилица, от места потребления и магистрального газопровода, степени неравномерности газопотребления, производительности и длины магистрального газопровода, геологической, геофизической и промысловой характеристики ныбранного пласта. Кроме того, при проектировании магистражных газопроводов или ответвлений от них необходимым усломін я кимероколдор йотроннеборо кинимер тору котемпав моня потребителей.

Оценка колебаний потребления газа отдельными категориями потребителен проводится на основе изучения режимов расходования газа с помощью числа часов использования максимума нагрузки, т. е.

$$T_{\text{subs}} = \frac{8760}{R_{\text{cer}} R_{\text{der}} \cdot R_{\text{cy}}}$$

который учитывает сезоппые, недельные и суточные колебания. Все три вида колебаний характеризуются коэффициентами неравномерности, представляющими собой отношение максимпльной нагрузки к средней, т. е.


$$\frac{G_{u,we}}{G_{vpert}}$$

Однако показатели $H_{\text{овс}}$ и K недостаточны с точки зрения регулирования неравномерности газопотребления как газохранилищем, так и ТЭС, функционирующей в начестве буферного потребителя

ток как для регулирования одинакового количества газа при равных значениях этих показателей требуется разное количество регулирую щего газа или разные объемы газохранилиция. Поэтому, кроме K и $\mathcal{H}_{\text{маке}}$, рекомендуются режиминае показатели, которые пашли широков применение в энергетике [1, 2]; показатель базовости, который равенотношению наименьшей напрузки к средней, τ , е. K

затель выравненности, который равен отношению наименьшей нагруз ки в наибольшей, т, е.

В какой же степени и и быть плименены эти режимные поки затели для регулирования неравномерности газопотребления? Проанк лизируем три графика, имеющие различные конфигурации (различно соотношение пиковых и базиеных частей), по равные площади по требления газа при ранных значениях средней G — максимальной величии расходов газа числа часов использования максимуми нагрузки $H_{\rm чис}$ (рис. 1).

Pire 1

Пеобходимо также отметить, что графики имеют одинаковым аначения коэффициента перавномерности K=1.50 и отличаются только значением минимального расхода $G_{\rm cm}$. Несмотря на то, что трафики имеют одинаковые шачения $G_{\rm cm}$ и $H_{\rm cm}$ значения K' и K' будут разными. Значения K' равны: для графика a=0.37, для графика b=0.50 и для графика b=0.93 значения b=0.62.

Графики потребления газа можно регулировать газопроводом газохранилищем и любинам топлиноснабжением Бели регулированы велется газопроводом, то расчет его пропускной способности произполнтся по велячине $G_{\mu\mu}$. Как пидно из графиков, загрузка газопроводон получается одинаковой для них, так как суммарива и максимальная величины газопотребления одинаковы. Для этого случае

 полноценно характеризует условия регулирования режима газопотребления.

При регулировании газохранилищем пропускная способность газопровода снижается до С Регулирование газохранилищем состоит в том, что количество избыточного газа (илощадь F_1) аккумульруется в газохранилище в летний период. В зимний период, когла ощущается нехватка газа, газ, отмеченный суммой площадей $F_{i}=F_{i}$ отбирается из газохранилища и используется в народном хозяйстве, Так как количество избыточного газа должно быть равно количеству ветостающего, то во всех графиках $F = F_{a}$. Однако $F_{a} - F_{a}$ по трем графикам не рашны, это означает, что для регулярования однпахового количества газа при равных значениях $H_{\text{маке}}$ требуется разное количество газа, необходимое для регулирования. Наибольшему значению K'' и K'', особенно K', соответствует наименьшая величина потребного объема газохранилища или необходимого количества резервного топлива. Следовательно, наимсивний объем газохранилишь наи резервного топлина имеет место в графике s, где K'=0.93 и K = 0.62.

Рассмотрим, наконец, случай, когда регулирование происхолит двойным топливоснабжением. Если базисная часть графиков покрывается мизутом или углем, что составляет для графика $a=25^{\circ}/_{0}$, для графика $b=62^{\circ}/_{0}$, то потребность в новом виде топлива будет разная: по графику $a=75^{\circ}$, по графику $b=65^{\circ}$, и по графику $b=65^{\circ}$, Если предположим, что никовая часть покрывается мазутом или углем, то потребность в новом виде топлива также составит разную величину. Таким образом, значения $H_{\rm tok}$, и K не могут считаться полноценными показателями для регулирования режима газопотребления двойным топливоснабжением. Для определения потребного объема газохранилища или резервного топлива показателя K и K'' более полнее характеризуют режим газонотребления, чем K в

В данной статье определены показатели, характеризующие колебання газопотребления отраслями промышленности, и приведены их численные значения.

Для горолских газовых сетей главным фактором, определяющим их работу, является режим потребления газа [3-5]. Если по режимным характеристикам газопотребления бытовыми, коммунально-бытовыми потребителями имеются сравнительно полиме данные, то режимы потребления газа различными отраслями промышленности остаются вока что мало изученными. Из-за отсутствия данных, характеризующих режим газопотребления отраслями промышленности, расход таза принимается равномерным в течение года.

С целью выявления показателей, характеризующих режим потре ления газа отраслями промышленности, проведена статистическая обработка фактических часовых и суточных рясходов газа отдельнычи промышленными потребителями Ленинградского и Бакинского промышленных узлов. Проведенные нами исследования показали, по всем отраслям промышленности, независимо от доли технологической нагрузки в общем газопотреблении, присущи определенные колебяния во времени.

Анализ ныявил ряд факторов, имеющий случайный характер, нооказывающий существенное влияние на режим гозопотребления: а) анарийные отключения и ремонтные работы как в произволстве, так и на газопроводах; б) остановка из-за профилактического и технологического ремонта; в) непредвиденные планом переходы на использование взямен газа другого видя топлина; г.) изменения графика газопотребления, вызванные изменениями режима технологического процесса в наружной температуры и т. п. Каждая отрасль промышленности имеет свой характерный режим потребления гила, который зависит от специфики работы технологического и эпергетического оборудования промышленных предприятий данной отрасли. В режиме газопотребления отраслями промышленности наблюдаются колебания не только в головом (сезонном), но и недельном и суточпом разрезах. Полученные при статистической обработке фактическогоматериала козффициенты, характеризующие колебания и газопотребления, показывают ту неравномерность, которая присуща различным отраслям промышленности.

Значения коэффициентов, характеризующих годовые или сезонные колебания газопотребления основными отраслями промышленности, привелены в таба. 1.

Fa6.mua 1

Отрасаь промышленности	Ленингралский промузея			Бакинский промузел		
	K	K.	K*	R	K	R*
Химическая	1.30	0.78	0.60	1.05	0.95	0.92
Тефтулерорабаты пающая	_	_		1 10	0.68	11,80
Машиностроительная и чаектролех-	1,52	0,53	0,35	1,25	0.51	0.65
пическая	1.45	0.65	0.45			
Радиотехническая 🕟 🕟 🕟	1,75	0.55	0.31			_
Строительные материалы	1,50	0,60	0,40	1,06	10,0	0,86
Пишеная и мясо-молочная -	1,27	0.70	0,55	1.21	0,80	0,70
	1.35	0.39	0,14			
Голиграфическая (1999)	1,46	0,35	0.31	_		
По исен промышленности	1, 10	0.70	0.50	1.15	0.88	0.77

Наибольшая неравномерность в годовом разрезе присуща предприятиям отраслей проміналенности Ленинградского промудля по сравнению с Бакинским, что объясняется продолжительностью отонительно-нептиляци иной нагрузки и илиянием последней на общее потребление газа. Наименьшая неравномерность присуша отраслям промышленности: химкческой, нефтеперерабатавающей и производству строительных материалов Бакинского промувля. Наибольшее значение коэффициента неравномерности отмечается и газопотребле-

нии радиотехнической, манииостроительной, полиграфической проиншленности. Это объясияется тем, что доля гехнологической нагрузки в общем газопотреблении составляет незначительную величину и отоинтельно-вештиляционная нагрузка оказывает существенное влияние на режим газопотребления, а также наличием перерывов и технологическом режиме предприятий.

Значения коэффициентов, характеризующих колебания га опотребления отраслями промышленности Бакинского промузла в суточном разрезе, приведены в табл. 2.

Отраса ь промышленности	Зимпой режим			Летини режим		
	K	K*	K"	К	Κ.	Κ"
Хамическая	1,07 1,08 1,10	0,92 0,91 0,89	0,86 0,64 0,77	1,08	0,92 0,90	0,85 0,80
-хэтодгээлс и кальпатичигонишы -хэтодгээг и калиолоом и иввэдий	1,32 1,30	0.79	0,60	1,38 1,38	0,55 0,80	0,35 0,60

Как видно из табл. 2, значения $K_{\rm rec}$ превосходят значений $K_{\rm rec}$ что объясияется отключением в весенве-летний периол отопительно-вентиляционной нагрузки, паличие которой в зимний периол содействует сглаживанию суточной неравноморности градика в опотребления.

Выволы

- 1. При регулировании режим голопотребления похранилищем или ТЭС показатели К и и не могут считаться универсальными, так как они характеризуют только условия регулирования, когда оно ведется газопроводом.
- 2. При регулировании перавномерности газопотребления газохранилищем или двойным топливоснабжением показатели *К* в *К* полнее характеризуют режим газопотребления, необходимый иля установления потребных объемов газохранилищ или резервного топлива.
- 3. Потребление газа различными отраслями промышленности происходит с определенными колебаниями, причем каждой отрасли присуща свойственная ей неравномерность в головом, недельном и суточном разрезах, независимо от доли технологической нагрузки в общем газопотреблении.

D. St. PULLATION LESSON

ԳԱԶԱՍՊԱՌՄԱՆ ՌԵԺԻՄԸ ԵՎ ՎԱՔԴԱՎՈՐՈՒՄԸ ՔՆՈՒԹԱԳՐՈՎ ՑՈՒՑԱՆԻՇՆԵՐԻ ՈՐՈՇՄԱՆ ՀԱՐՑԻ ՇՈՒՐՋԸ

U. of denote in a conf

Գազամբարների անհրաժեշտ ծավալի պահասության պատմառով, դաւասպառման սեժիմի անհավասարաչափության կարդավորումը դրվում է չերմային էլեկտրակայանների վրա։ Այգ հանդամանքը երևան է բերում գաղասպառման ռեժիմի և նրա կարդավորման ցուղանիշների գրսհորման անհրաժեռուսքյուն։

Հոդվածում աստջարկված են բազային և ամ ավասարության գործակիցներ, որոնը աներաժեշտ են դազամբարի պահանջվող ծավայի և պա հստա լին վասելիրի բանակի որոշման վաճար, երբ կարդավորումը աարվում է դազ ամբարի կամ «երմային էլեկարակայանի միջոցով, բանի որ անհավասարայափության դործակիցը և բեռնվածության մաբսիմալ օգտադործման ժամերի բանակը բնությացնեն միայն այն պայմանները, երբ կարդավորումը տարվում է դազամուցի միջորով։

Գազաապառման տասանում երը ընութագրող ցուցանիշները որոշված են արդառնաբերության տարբեր Հյուզերի համար և արված են նրանց քվային արժեջները։

ЛИТЕРАТУРА

- Купенов В. Шточикацу Е. О. Вопросы технико-экономического проектирования крупных гидростанции и энергосистеме. Госэнергонидат, 1953.
- Остян А. М. Применение метолов эверго-эхономических расчетов и регулировании режима тапоснабления. Сб. "Экономика транспорта, хранения и использонамия гара». Изд. "Иедра», 1964.
- 3 Видгоп Л. И., Козырев В. ..., Лейман П. П. и др. Некоторые особенности потребления таза в отдельных отраслях промышленности. Со. "Материалы научно-технического совещания по методике опенки влияния режимов потреблении природного така и газогнабжения на экономику гоплиносиабжения района"—ПНИПТЭнефтегаз, М., 1964.
- Тордимин А. И. Режим работы городских систем за оснабжения. Плд. МКХ РСФСР. 1955.
- Тыржевіния В. К. Технико-экономические показатели поддемного хранения природного газа. I ОСЛИТИ . Подземное хранение газат, ими 2, 1960.