ՀԱՅԿԱԿԱՆ ՍՍՀ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ

ИЗВЕСТИЯ АКАДЕМИИ НАУК АРМЯНСКОЙ ССР

Տեխնիկական դիտութ, սեշիա

XIX, Nº 6, 1966

Серия технических паук

ИЗМЕРИТЕЛЬНАЯ ТЕХНИКА

И. С. ОСИПОВ, А. М. ОВЧИННИКОВ, Л. М. ЩЕРБАКОВ

СЦИНТИЛЛЯЦИОННАЯ ГАММА-КАМЕРА С ИЗОБРАЖАЮЩИМ КРИСТАЛЛОМ *GJ* (*Rb*)

Сцинтилляционные камеры являются перспективным инструментом исследования и уже входят за рубежом в медицинскую практику. С их помощью разрешаются многие вопросы, связанные с изучением динамических процессов распределения меченых соединений в оргаинаме человека и их визувлизацией.

В Центральном научно-исследовательском рентгено-радиологическом институте МЗ СССР конструируется сцинтилляционная гаммакамера для топографических и функциональных исследований некоторых органов человека. Блок-схема камеры, представленияя на рис. 1

Рис. 1. Блок-схема сцинтиляционной гамма-камеры.

состоит из следующих основных узлов: датчика, трех усилителей, лифференциального дискриминатора, схемы формирования и задержки импульсов, низкочастотного осциллоскопа и блока питания.

Основным элементом сцинтилляционной камеры является фотоалектронный преобразователь, состоящий из монокристалла GJ (Rb), светопровода и семи фотоумножитслей. Днаметр кристалла—155 мм, толщина—14 мм. Кристалл упакован в специальный контейнер из дуралюминия. Светопровод изготовлен из оргстекла и имеет форму цилиндра днаметром 165 мм. высотой 90 мм. Назначение светопроводя состоит в распределении энергии сцингилляций между фотоумножителями в соответствии с их удаленностью от места всимшки. Семь фотоумножителей типа ФЭУ--14Б расположены на основании свето-

провода так, что образуют пранильный шестнугольник с заполненным центром (рис. 2). Фотоумножители подключены к схеме формирования координатиых сигналов. На выхоле этой схемы возникают сигналы, пропорциональные коорлинатам сцинтиляций. Отдельно формируются импульсы по амилитуде, пропорциональные положительным и отрицательным значениям координат х и у. Формулы сбора импульсов следующие:

Рис. 2. Схема расположения фотоум- ВУЛЬСОВ следующие: пожителей.

$$+ x = \frac{1}{5}P_{1} + \frac{2}{5}P_{2} + \frac{2}{5}P_{4} + \frac{3}{5}P_{7} + \frac{4}{5}P_{3} + \frac{4}{5}P_{5} + P_{4};$$

$$- x - \frac{1}{5}P_{4} + \frac{2}{5}P_{3} + \frac{2}{5}P_{5} + \frac{3}{5}P_{5} + \frac{4}{5}P_{2} + \frac{4}{5}P_{6} + P_{1};$$

$$+ y = P_{2} + P_{3} + \frac{1}{2}P_{1} + \frac{1}{2}P_{7} + \frac{1}{2}P_{4};$$

$$- y - P_{4} + P_{5} + \frac{1}{2}P_{1} + \frac{1}{2}P_{7} + \frac{1}{2}P_{4},$$

$$(1)$$

где Р. и Р. амплитуды импульсов на выходе соответствующих фотоумножителей.

При таком распределения сигнала все фотоумножители имеют одинаковую нагрузку и при этом обеспечивается линейная зависимость между величиной координатных сигналов и координатами сциптилляций.

Фотоэлектронный преобразователь и схема формирования координатных сигналов конструктивно объединены в один блок, помещенный в свинцовый экран. Этот экран имеет яченстый коллиматор со 124 коническими отверстиями и боконую защиту толщиной 50 мм. В целом этот блок носит название датчика сцинтилляционной камеры. Схема датчика представлена на рис. 3. Сформированные координатные сигналы усиливаются и подаются на отклоияющие пластины электронно-лучевой трубки. Суммарный импульс, предварительно прошедний амплитудный анализатор, поступает на модулятор. Этот суммарный импульс пропорционален энергии гамма-кванта и используется для отпиртия луча осциглоскова при сцинтиляциях, соответствующих фотопоглощению гамма-квантов. Усилители координатных сигналов, амилитудный анализатор и осциялоскоп являются нормализованными узлами электронно-физической аппаратуры, выпускаемой радиотехнической промышленностью.

Значительные затруднения при конструпровании сцинтилляцион-

ной камеры были связаны с выбором и изготовлением изображающего кристалла. Нанлучшим материалом для этих целей несомненно является моноконсталл Nal (Tl). Однако технология изготовления больших кристаллов йодистого натрия еще не осносна отечественной промышленностью, а имеющиеся опытные образцы стоят чрезвычайно дорого. Наиболее доступным материалом оказался йодистый цезий. Было провелено исследование сцинтилляционных свойств 10 кристаллов йодистого цезия с добавками различных активаторов (Cd. Cu. Br. Ba. Rb и T!). Эти сциятияляторы были изготовлены по нашей вросьбе Лабораторией кристаллов Ленииградского объединения оптико-механических предприятий (ЛООМГІ). Для

Рис. З, Схема датчика.

сравнения синитилляционных свойств кристаллов йодистого цезия с каждого из них сияты сцектры гамма-излучения йода—131. Полученные результаты сравнивались с гамма-спектром йода—131. сиятым с помощью кристалла Na1 (Tl). Измерения проводились на одноканальном гамма-спектрометре при ширине канала 0,5 и 1 вольт. Оценка сцинтилляционных качести кристаллов производилась по следующим параметрам в спектрах гамма-излучения: по амплитуде импульсов в фотопике U, по ширине фотопика на полувысоте W и по отношению K скоростей счета в фотопике N_n и во внадине перед фотопиком N_n . Принималось, что чем больше величины U, N_n и K и чем меньше величина W, тем лучше по своим сцинтилляционным снойствам исследуемый кристалл. В качестве окончательного критерия для отбора вристаллов было взято выражение

$$B = \frac{UN_sK}{W},$$
 (2)

В результате проведенных исследований установлено, что наилучшими сцинтилляционными свойствами после кристалла Na1 (T1) обладают кристаллы (.1 (Br) и G1 (Rb).

В таблице приведены значения фактора *В* для этих кристаллов, а на рис. 4—участки гамма-сисктров йода—131, полученных с помощью кристаллов *Nal* (*Tl*) — *N*₂ 1, *Gl* (*Br*) — *N*₂ 2 и *GJ* (*Rb*) — *N*₂ 5. Кристалл *Gl* (*Br*), показавший наилучшие свойства из всех испытанных образцов йодистого цезия, ввиду технологических трудностей не мог быть изготовлен в нужных для нас размерах. Поэтому пришлось остановиться на *GI* (*Rb*) с добавкой 1%, рубидия. Монокристалл диаметром 155 мм и толщиной 14 мм из этого материала был изготовлен Лабораторией кристаллов ЛООМП.

Выбор диаметра и толщины изображающего кристалла произвелен, исходя из следующих соображений. Многоканальный коллиматор с нараллельными отверстиями проецирует на кристалл изображение объекта, равное по величине размерам самого объекта. Так как в качестве нервых объектов исследования намечены щитовидная железа, почки и костные метастазы, имеющие в диаметре 80—120 мм. казалось бы можно было ограничиться кристаллом такого же диаметра. Однако влияние краевых эффектов уменьшает полезную площаль изображающего кристалла приблизительно на 30% [1]. В связи с этим диаметр кристалла выбран нами норядка 150 мм.

При определении необходимой толщины кристалла принимались во внимание два условия. С одной стороны, для і повышения эффективности кристалла и упрощения технологии его обработки было желательно иметь кристалл толщиной 30—40 мм. С другой стороны, увеличение разрешающей способности датчика требовало уменьшить толщину кристалла по крайней мере до средней длины пробега вторичного гамма-кванта при комптон-эффекте. Для йода—131 средняя длина пробега составляет 6,3 мм [1]. Трудность изготовления большого кристалла такой толшины заставила принять компромиссное решение: мы остановились на толщине 12—14 мм. По-видимому, этя толщана является оптимальной, тах как сконструпрованные и уже работающие за рубежом сцинтилляционные камеры имеют изобряжаюине кристаллы толщиной 0,5 дюйма, т. е. около 12 мм [2, 3].

Основными характеристиками камеры, влияющими на качество получаемого изображения, являются чувствительность, эффективность счета и разрешающая способность. Чувствительность любого измерительного прибора оценивается отношением выходного сигнала к сигявлу на входе. В сцинтилляционной камере входным сигналом является гамма-кваит определенной энергии, а в качестве выходного сигнала имеет смысл принять амилитулу импульса на выходе суммирующей схемы при возникновении сцинтилляции в центре кристалла.

Для сцинтилляционных датчиков величина чувствительности определяется общензвестным выражением

$$\frac{V}{E} = \frac{qx^{r}}{C_{\pm}} \left(\frac{b}{M_{ss}}\right), \tag{3}$$

где V — амплитуда импульса на выходе (в вольтах), E — энергия гамма-кванта (в M_{ab}), q — заряд электрона, x — коэффициент вторичной зинссии динодов, e — количество динодов, C — выходная емкость, z — средняя энергия кванта, затрачиваемая на один электрон, вырываемый из фотокатода.

Величния характеризующая свойства кристалла и светопровола, зависит от расположения фотоумножителей относительно места сцинтилляции. При сцинтилляции, возникшей в центре кристалла, она может быть экспериментально определена для каждого положения ФЭУ с помощью фотоумножителя с точно установленным параметром л. Имея в виду, что половину энергии импульса необходимо использовать на формирование координатного сигнала, искомая чувствительвость прибора определится как

$$\frac{V}{E} = \frac{qx^{e}}{2C} \cdot \sum_{n=1}^{\infty} \frac{1}{\varepsilon^{n}} \cdot$$
(4)

Формула (4) может быть использована для оценки чувствительности сцинтилляционной кямеры.

Эффективность счета определяется, как отношение

$$S = \frac{N}{N_0},$$
 (5)

где N — число гамма-квантов, участвующих в формировании изображения, N_0 — общее число квантов, изотропно испускаемых объектом.

Для рлиномерно распределенной активности без учета поглощеиия [4]

$$N = 3,7 \cdot 10^{1} A_{1} r_{i} p n, \tag{6}$$

где A_1 — активность в поле зрения одного отверстия коллиматора (в иккюри), γ — геометрический фактор, γ — эффективность поглощения, p — доля фотопоглощений, понадающих в окно амплитудного анализатора, n — число отверстий коллиматора в пределах проекции активной зоны

$$N_a = 3,7 \cdot 10^4 A,\tag{7}$$

гле А — активность исследуемого объекта.

Для тонких слоев активности A₁ и A относятся как площади отверстия коллиматора и активной зоны. В этом случае

$$S = 0.785 n_0 d^2 \gamma p_1$$

где no - плотность отверстий.

В случае, когда $H \gg h$, t мало, а $d \ll H$ (рис. 5)

$$\gamma = \frac{d^2}{16H^2} \tag{9}$$

(8)

и следовательно

$$S \ll 0.06 \ \frac{d^4}{P_1^{**}} \ n_0 \tau_i p.$$
 (10)

С помощью формулы (10), учитывая глубниу залегания исследуемого объекта и поглощение излучения в окружающих тканях, можно вычислить те количества активности, которые необходимы для

Рис. 5. К выподу формулы (10).

получения удовлетворительного изображения объекта на экранс осциллоскопа.

Общая разрешающая способность складывается из разрешающих способностей коллиматора $W_{\rm кол}$, кристалля $W_{\rm m}$ и электронных устройств $W_{\rm sy}$, т. с.

$$\mathcal{V} = f\left(W_{\text{koas}}, W_{\text{kps}}, W_{\text{sy}}\right), \quad (11)$$

 $W_{\rm кол}$ зависит от параметров отверстия коллиматора и от его материала. Она может быть оценена, как ширина кривой скорости счета от точечного источника на половине высоты этой кривой. $W_{\rm ир}$ связана со средним отклонением места возникновения сцинтилляции от точки входа гямма-кванта в кристалл.

Разрешающая способность электронных устройств *W* определяется, как произведение ширины окна дискриминации на чувствительность системы отклонения луча осциллоскова. Таким образом, любой точечный источник на экране электронно-лучевой трубки будет изображаться светящимся пятном с определенным законом распределения яркости. Очевидно, что расстояние между соседними отверстиями коллиматора *b* должно быть таким, чтобы выполнялось условие его численного равенства разрешающей способности *W*.

Практический выбор параметров коллимационной решетки можст быть сделан по характеристике пятна, полученного от равномерно распределенной активности вод единичным отверстнем коллиматора-В этом случае b = 2r, где r — радиус окружности, на которой яркость I подчиняется требованию

$$2I = I_{m}, \tag{12}$$

где Im — максимальная яркость пятиа (в центре).

Соблюдение данного условия обеспечивает наилучшую равномерность свечения экрана от распределенного на поверхности источника активности. При этом выполняется равенство b = W. ШНИРРИ

Поступило 22.VII.1966.

Ի, Ս. ՕՍԻՊՈՎ, Ա. Մ. ՕՎՉԻՆՆԻԿՈՎ, Լ. Մ. ՇՉԵՐՔԱԿՈՎ

ՍՑԻՆՏԻԼՅԱՑԻՈՆ ԴԱՄՄԱ-ԿԱՄԵՐԱ CI (Rb) ՊԱՏԿԵՐՈՂ ՔՅՈՒՐԵՂՈՎ

Ամփոփում

նկարագրված է CI (Rb) պատկերող բյուրհղով օցինտիլյացիոն դամմակամերայի բլոկ-սխեման, որը նախատետված է կենդանի օրգանիդմների վրա սադիտակտիվ իղոտոպների միջոցով ֆունկցիոնալ և տեղադրական հետաղոտունյուներ կատարելու Համար։ Կամերայի Տիմնական բաղկացուցիչ Հանղույցներն են՝ ավիչը, ուժեղարարները, ղիֆերննցիալ դիսկրիմինատորը, իմպուլսների ձևավորման և կասեցման սխեման, ցածրահաճախային օսցիլոսկոպը և սնման բյոկը։ Շարագրված են օցինաիլլացիոն ժիաթյուրեցին ներկայացվող պահանջննրը։ Բնրված են սցինտիլյացիոն կամնրայի զդայու ծակության, էֆնկաիվության և լուծիչ ընդունակության առնուսկան հիմնավոբումները։ Արտածված են բանաձևեր կամերայի նշված պաթամետրեր։ էրապերիվենտայ որոշման համար։

ЛИТЕРАТУРА

1. Anger H. O. Rev. Sci, Instr. 29, 27, 1958.

[⊥] Anger H. O. Nucleinics, vol. 21, № 10, 56-59, 1963.

3 Каталог фирмы Nuclear Enterprises (G. B.) 85--86, Sept. 1965.

4. Mallard J. R., Myers M. J. Phys. Med. Biol., 8, n 2, 165-182, 1963.