цаяцыца иль эропрезирате цацубиризр областия известия академии наук армянской сср

Տեխնիկական դրտութ, սեշիա

XIX. Nº 2, 1966

Серия технических наух

СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ

С. А. БАГЛАСАРЯН

ИССЛЕДОВАНИЕ НЕСУЩЕЙ СПОСОБНОСТИ ВНЕЦЕНТРЕННО СЖАТЫХ СТЕРЖНЕЙ Н-ОБРАЗНОГО СЕЧЕНИЯ ИЗ АЛЮМИНИЕВОГО СПЛАВА Д 16-Т*

В 1964—65 годах в лаборатории Армянского НИН строительных материалов и сооружений было произведено испытание внецентренно сжатых стержней прямоугольного, Н-образного, швеллерного и таврового сечений из алюминиевого сплава Д 16-Т. Цель этих испытаний заключалась в выяснении влияния формы поперечного ссчения на несущую способность сжатых элементов и определение степени соответствия расчетных данных с экспериментальными.

В данной статье освещаются результаты исследования внецентренно сжатых стержней И-образного сечения из алюминиевого сплава Д 16-Т; приводятся расчетные формулы для определения критической гибкости, составленные с учетом линейного упрочнения материала в области упруго-пластических деформаций на основе [2]; результаты экспериментального исследования сопоставлены с расчетными данными.

В основу расчета положены следующие допущения: во всех стадиях работы стержия сохраняется гипотеза плоских сечений: изогнутая ось стержия принимает форму полуволны синусоиды; прогибы стержия по сравнению с его длиной малы; напряжения по сечению распределяются согласно диаграмме с-з материала; диаграммы с--ири растяжении и сжатии одинаковы; влияние сдвигающих сил не учитывается; плоскость изгиба совпадает с плоскостью действия нагрузки.

Критическая гибкость внецентренно сжатого шарнирно онертого с обонх концов стержня согласно [2] определяется из следующего ныражения:

 $\gamma = \frac{P_{kp}}{\gamma_k F}; \quad m = \frac{eF}{W_k}.$

$$\lambda_x^2 = \frac{\pi^2 E}{\varphi \sigma_n} \left(1 - \frac{m\varphi}{1 - \varphi} \times \right), \tag{1}$$

где

* Научный руковолитель проф. В. В. Пинаджян

Исследование несущей способности сжатых стержней

В опасном сечении внецентренно сжатого стержня H-образного профиля к моменту исчерпания несущей способности могут возникнуть напряженные состояния, показанные на рис. 1. В зависимости от напряженного состояния опасного сечения по формулам, представленным в табл. 1, определяется коэффициент ». Модуль упругости – *E*, предел текучести (предел пропорцио-

Рис. 1. Энюры напряженных состояний сжатого стержня. И-образного сечения.

наяьности) — z_{σ} и коэффициент $b = \frac{E_1}{E}$ определяются по линеаризированной диаграмме $\sigma = \varepsilon$ сжатия материала.

В табл. 2. приведены результаты испытания на растяжение полос, вырезанных из полок заводских профилей Н-образного сечения. В этой же таблице даны редукционные коэффициенты, полученные ранее в [1] при сравнении физико-механических характеристик цилиндров при их испытании на сжатие и полос на растяжение. Предполагаемые характеристики материала Н-образного сечения на сжатне, вычисленные с учетом редукционных коэффициентов, даны в последней строке табл. 2.

Рис. 2. Линеаризированные диаграммы "напряжения-деформации" при растяжении и сжатии.

Таблица 1

Расчетные формулы для стержней Н-образного сечения

20					
N⊵ N⊵ IIII	Напряжен- ное состоя- ние сечения	Высоты пластических зон	Коэффициент и		
	6	В	F.		
1	а (рис. 1а)	$\begin{array}{c} 0 < c_1 < t \\ \frac{c_1}{h} = \alpha - \sqrt{\alpha^2 - \frac{1}{1 - \psi} \frac{m\varphi}{1 - \varphi} \frac{W_x}{d_1 h^2}}; \\ \alpha = \frac{1}{2} + \frac{m\varphi}{1 - \varphi} \frac{W_x}{hF}; \end{array}$	$x = 1 - \frac{2c_1}{h} + \frac{2(1-\psi)d_1c_1^2}{hF} \left[1 + \frac{1-\varphi}{m\varphi}\frac{hF(3h-2c_1)}{12J_x}\right];$		
2	b (рис. 1b)	$\begin{aligned} t &< c_1 \leq h - t \\ \frac{c_1}{h} = \alpha - \\ -\sqrt{\alpha^2 - \frac{t}{h} \left(1 - \frac{2d_1}{b}\right) \left(2\alpha - \frac{t}{h}\right) - \frac{2}{1 - \psi} \frac{m\varphi}{1 - \varphi} \frac{W_x}{bh^2}}{\alpha = \frac{1}{2} + \frac{m\varphi}{1 - \varphi} \frac{W_x}{hF},} \end{aligned}$	$ \begin{split} \mathbf{x} = & 1 - \frac{2c_1}{h} + \frac{1 - \psi}{2} \Big[\frac{4d_1c_1^2 + 2 \ (b - 2d_1) \ (c_1 - t)^2}{ht^2} + \\ & + \frac{(1 - \varphi) \left[2d_1c_1^2 \Big(\frac{3}{2} \ h - c_1 \Big) + (b - 2d_1) (c_1 - t)^2 \Big(\frac{3}{2} \ h - \\ & - \frac{3m\varphi \ I_x}{3m\varphi \ I_x} \Big] \end{split} $		

Таблипа 1 (продолжение)

а	6	8	E.
3	с (рис. 1с)	$\begin{split} h - t \leqslant c_1 \leqslant h \\ \frac{c_1}{h} = 1 - a - \sqrt{a^2 - \frac{\psi}{1 - \psi} \frac{m\varphi}{1 - \varphi} \frac{W_x}{d_1 h^2}}; \\ a = \frac{1}{2} - \frac{m\varphi}{1 - \varphi} \frac{W_x}{hF}; \end{split}$	$ \begin{aligned} \varkappa &= (1-\psi) \Biggl\{ \frac{2d_1 (h-c_1)^2}{hF} + \frac{1-\psi}{m\psi} \Biggl[1 - \\ - \frac{d_1(h-c_1)^2 \Bigl(\frac{h}{2} + c_1 \Bigr)}{3I_x} \Biggr] \Biggr\} + \psi \Bigl(1 - 2\frac{c_1}{h} \Bigr); \end{aligned} $
4	<i>d</i> (рис. 1d)	$\begin{split} h-t \leqslant c_{1} \leqslant h, & 0 \leqslant c_{2} \leqslant t \\ (1-\psi) c_{2}^{2} - \frac{F}{2d_{1}} (1-\psi) c_{2} - (1-\psi) (h-c_{1})^{2} + \\ & + \frac{F\left(1-\psi\right) (h-c_{1})}{2d_{1}} - \frac{\psi F}{d_{1}} \left(\frac{h}{2} - c_{1}\right) = 0; \\ & a = \frac{h}{2} - \frac{m\varphi}{1-\varphi} \frac{W_{x}}{F}; \\ \frac{\partial c_{2}}{\partial c_{1}} = \frac{\frac{F}{2d_{1}h} \left(1-\varphi-2\psi\right) - 2(1-\psi) \left(1-\frac{c_{1}}{h}\right)}{2\left(1-\psi\right) \frac{c_{2}}{h} - \frac{F}{2d_{1}h} \left(1-\varphi\right)}; \end{split}$	$ \mathbf{x} = \frac{(1-\varphi)(h-c_1-c_2)}{h} + \frac{(1-\varphi)(1-\varphi)}{m\varphi} \Big[1 - \frac{d_1(h-c_1)^2 \Big(\frac{h}{2} + c_1\Big) - d_1 c_2^2 \Big(\frac{3}{2}h - c_2\Big)}{3I_x} \Big]; $

Таблица 1 (продолжение)

Таблица I (продолжение)

Принятые обозначения: F. Ix, Wx- площадь, момент инерции и момент сопротивления сечения относительно оси x-x.

Таблица _

a partitione i operational deside departe fine fine i the end of										
№№ ПП	Клеймо образца	K2/M.H ²	7 _{0.2} N2/MA ²	Е тнамя	₹ ₀ 82 868 ⁴	$\phi = \frac{E_1}{E}$				
12315567890 10112	11 p 11 2 p 12 2 p 13 2 p 13 2 p 13 2 p 14 2 p 15 2 p 15 2 p 16 1 p 16 2 p	37,0 37,2 36,9 37,0 36,8 36,9 36,9 37,1 37,0 37,3 37,2 36,8 37,0	39,5 39,63 39,73 39,14 39,14 39,77 39,6 39,6 39,6 39,73 39,73 39,73 39,73 39,73 39,73 39,73	$\begin{array}{c} 7.15\\ 7.10\\ 7.13\\ 7.14\\ 7.45\\ 7.16\\ 7.16\\ 7.16\\ 7.16\\ 7.14\\ 7.13\\ 7.12\\ 7.13\end{array}$	38,2 38,1 37,9 38,0 37,6 38,3 37,9 38,2 38,2 38,2 38,2 38,1 37,9	(1,050 (0,050) (0,050) (0,050) (0,050) (0,060) (0,060) (0,050) (0,050) (0,050) (0,050) (0,050) (0,050)				
среднее и нип	ри растяже-	37,0	39,4	7,14	38,0	0,050				
редукцион фициент	нные коэф- гы	$\frac{P}{\pi_p} = 0,825$	= ^c =0,936 =0,2	$\frac{E^{\rm e}}{E^{\rm p}} = 0,994$	0,897	05 ↓ ↓ ↓ ↓ 50				
Физико-м характе сплава	еханические ристики ври сжатии	30,5	36,9	7,10	31,1	U,075				

Физико-механические характеристики образцов из сплава 116-Т при испытания на растяжение и иреднолагаемые характеристики при сжатии

На рис. 2 показаны линеаризированные днаграммы ---- силава Д 16-Т при растяжении полос из полок Ш-образного сечения и соответствующая диаграмма сжатия того же материала.

Для испытания стержией на внецентренное сжатие было изготовлено 18 образцов 11-образного сечения из сплава Д 16-Т гибкостями 40, 60 и 100. Геометрические характеристики сечения приведены на рис. 4.

Относительный эксцентрицитет приложения нагрузки принимался равным *m* 0,5; 1,0 и 3,0 для каждой гибкости. Торцы образцов были обработаны с точностью до 0,005 *мм* и их перпендикулярность к оси проверена угольником перного класса. Выгибы образцов до испытания составляли не более 1/1000 их длины. Для испытания были использованы те же ножевые шариирные приспособления, что и для образцов прямоугольного сечения, описанные в [1]. Деформации крайних волокон внецентренно сжатого стержня определялись при помощи датчиков сопротивления с базой 20 *мм*. Прогибы образцов в середине и в четверти длины, а также их укорочение определялись при помощи прогибомеров ПАО-6. Испытания образцов производились на гидравлических прессах ГМС-20 и ГРМ-1.

На рис. З показан образец во время испытания на внецентреянос сжатие. В результате испытаний для каждого образца П-образного сечения были получены следующие параметры: деформации крайних волокон сечений в середние и в четверти расчетной длины, прогибы оси стержия в середние и в четверти, укорочение образца, критическая нагрузка.

Каждый образец перед испытанием тщательно центрировался

так. чтобы показания датчиков по каждому сечению не отличались между собой более чем на 5%. После центрировки образец сдвигался от оси вриложения нагрузки на величний необходимого эксцентрицитета с точностью до 0.01 мм. Нагрузка к образну прикладывалась ступснями в 4:5% от предполагаемой критической силы до появления пластических деформаций. Следующие ступени нагрузки составляли $1 = 2^{\circ}_{,o}$ от $P_{\rm sp}$. Отсчеты по приборам брались после стабилизации деформаций. Точность измеряемой нагрузки составляла - 1° о. Результаты исяытаний висцентренно сжатых стержней 11-образного сечения приведены в тяба. З. Во всех стержнях, кроме 4 -05 1, процесс исчерлания несущей способности не сопровождался местной потерей устойчиеости полок.

Рис. 3. Псиматание стержия Н-ооразного сечения на внецентренное сжатие.

Деформации крайних сжатых волокон в среднем сечении стержия 4-05-1, начиная с нагрузки, равной 0,98 *Р*_{кр}, росли скачкообразно, причем одновременно со скачком деформации отмечалось временное валение нагрузки на прессе. Таких скачков наблюдалось два, по-видимому, вследствие неодновременной потери местной устойчивости обенх полок. После второго скачка произошла потеря устойчивости всего стержия.

На основе полученных в табл. 2 физико-механических характеристик материала при сжатии по формуле (1), были вычислены кривые в координатном поле $-\lambda$ для значений m = 0.5; 1,0 и 3,0. Расчет по напряженному состоянию f (рис. 1) производился на электронной вычислительной машине. Результаты расчетов приведены в табл. 3 в на рис. 4. Для сопоставления там же приведены кривые, вычисленные по формулам СНиП II—В·5—64 [3].

Таблица З

γ 10 φουλγιο []] $P_{\rm sp}$ 10. =47 7. No.N2 Кленмо Ip m 8 CHHII 0 62 ş hu нп обралца 2 20 4-05-1 39,950,5 9200 20,40 0,600 1 0,603 0,601 0,590 1,003 1,022 23 39,980,5 39,071,0 4-05-2 20,62 0,606 9300 20,62 16,41 16,60 10,70 10,38 13,64 13,59 11,66 -1-1 7400 0,482 0.484 0.506 0,478,0,957 1,013 40,04 1,0 40,10 3,0 0,487 0,315 0,305 4 -1 2 7480 14 S 4 3 1 4830 0,310 0,333 0,292 0,931 1.062 39,963,0 59,950,5 6 $4 \ 3 \ -2$ 4680 7 6 US I 0,101 6150 0,399 0,409 0,395 0,976 1,010 0,398 8 60,080,5 6 15-2 6120 60,001,0 0.343 526Ŏ ĝ, 6-1-1 0,312 0,349 0,337 0,980 1,014 10 6 - 1 - 260,031,0 5240 11.62 0.34159,983,0 11 6-3-1 3390 7,52 0,221 0,221 0,235 0,219 0,942 1,008 0,221 6-3-2 12 60,003,0 7,54 3400 13 10 05 1 100,000,5 6,41 0,188 2890 0,187 0,198 0,185 0,944 1,012 10 - 05 - 299,93,0,5 2870 0,187 14 6.36 100,051.0 5,59 15 10-1 --1 25200,164 0,164 0,177 0,166 0,927 0,968 10 - 1 - 2100,101,0 2540 5,64 16 0,165 10 -3 -1 0,134 17 2060 0,135 0,132 0,131 1,023 1,030 18 0,137 10 - 3 = 2100,063,0 2090 4,66

Результаты исимтания внецентренно, сжатых стержней П-образного сечения из сплава "1 16-Т

Нетрудно заметить лучшую сходимость экспериментальных данных с результатами расчета по формуле (1), по сравнению с результатами, получаемыми по [3].

Разница между результатами СНиП и экспериментальными данными в дианазоне гибкостей 40-100 идет не в запас прочности в пределах 7° , в то время как результаты. полученные по формуле (1) в указанном днапазоне гнокостей. ИДУТ В Зянас прочности в прелелах 6%, Во втором случае исключение составляет элемент гибкостью *i* = 100 при *m* = 1,0, где имеется отклонение не в запас прочности в 1%.

На основании проведенного исследования можно придти к следующим выводам:

1. Проведенное сравнение экспериментальных значений критических сил внецент-

Рис. 4. Сопоставление экспериментальных результатов с распетными. Силошной линией показаны кривые, полученные по формуле (1); штрих ликией кривые, полученные по СНиП II-В-5-64; кружочками показаны результаты экспериментов.

ренно сжатых стержней Н-образного сечения из силава Д 16-Т с результатами расчета по предложенной в [2] методике и по СМиП $II - B \cdot 5 = 64$ ноказало, что при m = 0.5; 1,0 и 3 в диапазоне гибкостей и 40 -100 экспериментальные данные лучше согласуются с результатами, полученными по формуле (1). Панбольшая разница между реаультатами полученными по CHuff II В·5—64 и экспериментальны из ланными в указанном диапазоне гибкостей и эксцентринитетов достинает 7° в при $\lambda = 40$, m = 3.0 и $\lambda = 100$, m = 1.0, причем расчет по CHuff и этом случае дает отклонение не в запас прочности. Кривые CHuff отклонения в запас прочности до 2° в по сравнению с экспериментальными данными только при 40, m = 0.5 и $\lambda = 100$, m = 3.0.

 Наибольшая разница между результатами расчета по формуле (1) и экспериментальными данными достигает 6% при л=40,
м 3.0, причем везле, кроме / 100, м 1.0, расчет по предложенной истодике идет в запас прочности.

При *i*=100, *m*=1.0 расчет по формуле (1) идет не и запас всего ва 1^a;, что находится в пределах возможной ошибки расчета и экстеримента.

Алі шевий НИН строиматерналон и сооружений

Поступило 15.X.1965

ป น. คนกุษแยนกรณ

ԱԼՅՈՒՄԻՆԻ Д16-Т ՀԱՄԱՉՈՒԼՎԱԾՔԻՑ ՊԱՏԲԱՍՏՎԱԾ Η-ՉԵՎԻ ԻՏԲՎԱԾՔ ՈՒՆԵՏՈՂ ԱՊԱԿԵՆՏՐՈՆ ՍԵՂՄՎԱԾ ՉՈՂԵԲԻ ԿԲՈՂՈՒՆԱԿՈՒԹՅԱՆ ՀԵՏԱՉՈՏՈՒԹՅՈՒՆԸ

Ամփոփում

Հողվածում բերված են այլումինի Д16-1 Տամաձուլվածջից պատրաստած 1-ծեի կարվածջ ունեցող ապակննարոն սեղմված ձողերի կրիտիկական կանունյունը որոշելու Հաշվարկային թանաձներ։

ЛНГЕРАТУРА

- Імпінарян С. А. Экспериментальное исследование несущь став былогия сжатых стержней на алюминиевого силава Д 16-Т. Известия А.Н. Арменской ССР, серия тохнических наук, XVIII, № 3, 1965.
- Паваджин В. В. Некоторые нопросы предельного состояния с-этых элементов стальных конструкций, Иап.-зо АШ АрмССР, Ерсили. 1956.
- проительные нормы и правиля. Часть II, ралдел Н. гл. 5. Аль из низые конструкции. Нормы проектирования. Москва, 1965.

H= 111, 2-4