строительные конструкции

с. г. ионнисян

ИССЛЕДОВАНИЕ ДЕФОРМАЦИЙ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ ИЗ ЛЕГКИХ БЕТОНОВ НА ПРИРОДНЫХ ЗАПОЛИПИТЕЛЯХ. АРМИРОВАННЫХ СТЕРЖИЕВОЙ АРМАТУРОЙ КЛАССА AIV

Применение стержиевой арматуры повышенной прочности в железобетонных коиструкциях позволяет сократить размеры поперечных сечений и снизить вес элементов, при этом во многих случаях определяющим из трех предельных состояний становится деформативность конструкции. Предварительное напряжение арматуры существенно уменьшает деформации конструкции. Однако и в этом случае, особенно для конструкций, выполненных из легких бетонов, расчет по второму предельному состоянию остается важным и необходимым. В настоящей статье налагаются результаты исследований деформаций изгновемых элементов из литоиднопемзобетона и перлитобетона, армированных стержневой арматурой класса AIV. Характеристики этих бетонов были приведены в [1].

Исследование физико-механических свойств легких бетонов при сжатии позволило выявить, что упругие свойства бетонов улучшают-

ся с увеличением их прочности. На рис. 1 показаны экспериментальные значения коэффициента упругости $v = \varepsilon_{ynp.}$ ($\varepsilon_{ynp.}$ упругие деформации: \$_{пол.} — полные деформации) для литоиднопемаоретона. полученные при центральном сжатин призм сечением 10×10×10 см. Призмы нагружались эталами по 0,1 от разрушнощей нагрузки с няти минутной выдержкой на этапе. Hа рис. 1 видно, что при = R = =0,8 -эд кыл ч киноприфферм кинорив тона с $R_{\rm np} = 200$ кг сиг равиялись 0.73-0.79, для бетонов с Rup -=320 360 кг см' значения у были

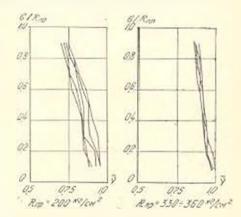


Рис. 1. Изменение коэффициента упругости литопднопемзоретона в зависичости от степени его пагружения и прочности.

в пределах 0,87-0,90. Таким образом, при одинаковых условиях ис-

нытания доля пластических деформаций в полных деформациях бетона уменьшается с увеличением прочности бетона. Такой характер изменения упругопластических свойств легких бетонов в зависимости от их прочности наблюдался и при исследовании работы балок, выполненных из них. Экспериментальные образцы балок имели сечение 12×18 см. длину 260 см. Балки армиронались рабочей арматурой 2Ф12ст. 25Г2С и монтажной арматурой 2Ф6,5ст. 25Г2С. Перед применением в конструкции рабочая арматура упрочиялась на стенде холодной вытяжкой. После упрочнения и старения арматура по своим свойствам соответствовала сталям класса AIV и имела следующие характеристики: $\sigma_t = 6300 + 6900$ кг см²; $E_a = 2.08 \cdot 10^6$ кг см²; с равк. -8-10° о. Переменными параметрами в исследованиях были кубиковая прочность бетона (231-646 кг см-) и величина предварительного напряжения арматуры (0-5800 кг см.). Кратковременной нагрузкой были испытаны 32 балки. Нагружение балок при испытании производилось сосредоточенными силами в третях пролета. При анализе деформаций были использованы также данные выполненных в АНСМ опытов канд. техн. наук С. А. Шагиняна [2] над туфобетонными балками с прочностью бетона 120-160 кг см., армированными арматурой класса АІ.

До момента образования трещин в бетоне сопротивление обычного и предварительно наприженного элемента воздействию внешней нагрузки и его жесткость харатеризуются работой всего понеречного сечения с учетом растянутой и сжатой вон. Для определения прогибов в этой стадии работы элемента в расчете принимают жесткость

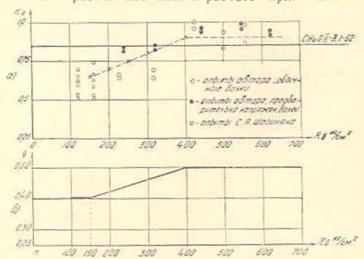


Рис. 2 а) Изменение коэффициента к, в заинсимости от прочности легкого бетона; б) Изменение коэффициента в зависимости от прочности легкого бетона.

 $k_0 E_6 I_{\rm np}$, где k_0- коэффициент, характеризующий синжение жесткости элемента за счет проявления неупругих свойств бетона. В [3] принимают $k_0\!=\!0.85$. На рис. 2 (а) показаны экспериментальные значения

коэффициента k_0 для обычных и предварительно напряженных образцов, определенные при нагрузках (0,75-0,80) Мгр. По данным рис. 2 (a) можно сделать вынод, что коэффициент k_0 зависит от прочности бетоня и увеличивается с унеличением последнего. Это подтверждает приведенные выше данные, указывающие, что пластические свойства легких бетонов зависят от их прочности. Следует отметить, что для прочностей бетона 200-300 кг см- коэффициент $k_{\rm o}$ оказывается для ненапряженных балок равным 0.65-0.70, а для предварительно напряженных балок 0,80-0,85. По-видимому, в предварительно напряженных конструкциях из легких бетонов указанных прочностей в результате ползучести бетона, происходившей в процессе выдержки образца до его испытания внешней нагрузной, запас пластических деформаций в бетоне уменьшается и при кратковременных испытаниях бетон проявляет более высокие упругие качества. Для легких бетоноя высоких прочностей с относительно высоким расходом цемента и с более илотной структурой этого явления не наблюдается. Для расчетов можно рекомендовать значения коэффициента k_0 , приведенные в табл. 1.

	_		Таблица 1		
Кубиковся прочность бетона, кајам	150	200	250	300	100
k,	0,65	0,70	0,75	0,80	0,90

При пересмотре порм проектирования железобетонных конструкций проф. А. А. Гвоздев предложил одиную методику определения прогибов обычных и предварительно напряженных изгибаемых конструкций, работающих с трещинами в растянутой зоне [4]. Исходной для расчета кривизи (прогибов) железобетонных конструкций принята формула

$$\frac{1}{9} = \frac{M_2}{h_0 z_1} \left(\frac{z_0}{E_1 F_1} + \frac{r_0}{(z + \gamma') b h_0 E_6 \gamma} \right) = \frac{N_0}{h_0} \cdot \frac{z_0}{E_0 F_6}$$
 (1)

При построении формулы (1) были приняты основные предпосылки теории проф. В. И. Мурашева [5], при этом в расчет вводилась высота сжатой зоны в сечении над трещиной, определенная без применения гипотезы плоских сечений, а также учитывалось влияние вродольной силы на деформации образца. Для определения парамет-

ров $\frac{1}{h_0}$, в [3] приведены соответствующие расчетные форму-

лы. Значение коэффициента у принято для обычных нагибаемых конструкций равным 0,5, для предварительно напряженных 0,45. Произведенные расчеты и сравнения опытных и расчетных деформаций показалл, что для обычных и предварительно напряженных конструкций из легких бетонов на природных заполнителях, работающих с трещинами и растянутой зоне, можно применить методику расчета

деформаций СНиПП—Б·1—62, при этом величина у в формуле (1) должна приниматься переменной и зависящей от прочности бетона. Рекомендуемые значения у приведены на рис. 2 (б). Ниже марки 150 величика у принимается равным 0,4, выше марки 400—равным 0,5; при $400 > R_b > 150$ значение у определяется по липейной интериоляции. На рис. 3 (а) приведены опытные и расчетные прогибы для ба-

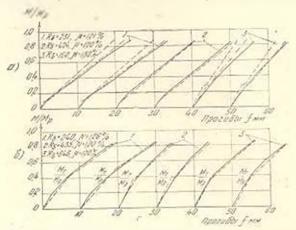


Рис. 3 а) Прогибы болок с ненапрягаемой арматурой, 1, 2 опыты автора, 3 опыты С. А. Шагиняна.

Расчет по [3]————— То же с учетом переменных значений k_1 и у. 6) Прогибы балок с предварительно напряженной арматурой, 1, 2, 3 опыты автора. ——— Расчет по [3] с учетом переменных авачений k_0 и у.

лок из легкого железобетона с ненапрягаемой арматурой. Данные на рис. 3 (а) показывают, что принятие коэффициентя у согласно рис. 2 (б) значительно улучшает сходимость опытных и расчетных прогибов балок.

Исследования предварительно напряженных образцов из легкого железобетона выявили, что опытные деформации растянутой арматуры существенно превышают величины приведенные п [3]. На ркс. 4 представлены значения коэффициента 4 полученные по опытным данним автора. Для образцов с прочностью бетона 200-300 кг см коэффициент 🍇 сразу же после трещинообразования оказывается близким к 0,8, а с возрястанием нагрузки опытные гочки приближаются к едвинце. Это, по-видимому, издо объяснить относительно низким модулем упругости и низкой прочностью на растяжение указанных бетонов. Исследование деформаций сжатого бетона для тех же образцов показало, что средние деформации крайнего волокия сжатой зоны бетопа, вычисленные с учетом в по рис. 2 (б) переоденивают примерно на 20% опытные их значения. Причину превышения расчетных деформаций над опытными можно усмотреть в том, что для указанных прочностей бетонов предварительное обжатие и происходящие в реэультате этого деформации ползучести уплотняют бетон и, возможно,

увеличивают его модуль деформаций. Так, опытные предварительно напряженные образцы с прочностью бетона 183 кг/см² обжимались в нозрасте 22 дней, а испытывались в нозрасте 90—92 дней. За этот вромежуток времени в бетоне произошли пластические деформации: на уровне рабочей арматуры (46.5—53.5) · 10⁻⁵, на уровне крайнего

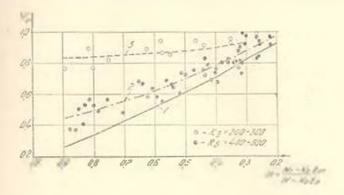


Рис. 1. Значения коэффициента Wa для предварительно напряженных балок из литоиднопемзобетона

$$1-\frac{1}{4a}$$
 1,3-1,1 $m = \frac{1-m}{6-4.5m}$ [3]. $2-\frac{1}{1+m}$ 3- 1.3-\frac{1}{1+7m}

налокна сжатой зоны—25·10-3. Используемый же в расчетах модульупругости определялся на призмях 10×10×40 см из того же бетона, вранящихся в обычных условиях, без предварительного обжатия. При вычислении протибов предварительно напряженных балок с прочпостью бетона 200-300 кг.см неточности в подсчете средних деформаций растянутой арматуры и сжатого бетона компенсируют друг друга, и прогибы, вычисленные по пормам [3] е учетом у согласно рис. 2 (6) хорошо описывают опытные прогибы. Учитывая, что в раннем возрасте после спуска патяжения арматуры деформации ползучести бетона в балках от усилия обжатия будут незначительными, можно предположить, что средние деформации сжатой зоны бетона будут точнее описываться формулой норм с учетом $v = f(R_0)$ на рис. 2 (б) и при вычислении прогибов для подсчета 4 пеобходимо будет пользоваться данными кривой 3 на рис. 4. Вопрос о влиянии толаучести легких бетонов на их упруго-пластические свойства при пратковременном загружении нуждается в дальнейшем исследовании. Для предварительно напряженных образцов с прочностью бетона 100-600 кг/см² средние деформании сжатого ботона и растянутой арматуры, также прогибы удовлетворительно описываются формулами СНиП при принятии коэффициента v=0,5 согласно рис. 2 (б). На рис. 3 (б) показаны опытные и расчетные прогибы преднарительно навряженных балок. По экспериментальным данным можно сделять вывод, что для обычных и предварительно напряженных балок 3-й качегории трещиностойкости, выполненных из легких бетонов на природных заполнителях, расчет прогибов от кратковременной нагрузки можно вести по СП и П при соответствующем учете упруго-пластических свойств бетопа.

Длительной нагрузкой были испытаны 6 балок из литоиднопемзобетона, из коих 3 обычных и 3 предварительно напряженных. Процент армирования балок $p=1,2^{\circ}$ величина предварительного напряжения арматуры равнялась $z_0=4200~\kappa r~c.u^2$. Балки ставились под нагрузку в возрасте 37—47 дней. Величина длительно действующей нагрузки составляла примерно 0.5-0.55 от разрушающей. При этой нагрузке во всех балках, обычных и предварительно напряженных, имелись трещины в растянутой зоне. Температурно-влажностный режим помещения изменялся в пределах $p=71\pm4^{\circ}$, t=22+3 С. Результаты испытания приведены в табл. 2.

Тоблица 2

Марка балок	Проч- ность бе- тона в исиыта- иня катем ³	Величина длитель- по зей- стиую- щей на- грузки кг. м	Пр мгночен- ный эк- спери- ментали- ный $f_{\rm w}$	отном в л полижи экспери- менталь- ный f _п	им [3] при у=0.18 f _{нари}	$\frac{f_{\rm n} - f_{\rm nogw}}{f_{\rm n}} 100^{\rm o}$	J _R
ЛБ-2 -0 (3) ЛБ-20 (4) ЛБ-21 (3)* ЛБ-2 -1 (41* ЛБ-4 -0 (1) ЛБ-4 -1 (1)*	302 302 298 298 412 422	1080 962 1200 1035 1128 1251	12,16 10,82 9,33 9,02 10,48 8,31	23,3 20,3 17,8 16,3 19,9 15,1	21.1 18.8 18.5 16.6 21.0	÷ 9.4 ÷ 7.4 — 3.9 = 2.2 = 5.5 — 19.0	1,92 1,91 1,82 1,31 1,90 1,82

[•] Образцы с предварительно наприженной арматурой.

Деформации сжатой воны бетона напболее интенсивно парастали в первые дни загружения (рис. 5 и 6). Однако и после 340—350 дней выдержки салок под нагрузкой деформации продолжали расти. Полные деформации бетона во времени и полные прогибы определялись экстранолянией полученных данных до 1000 дней загружения [6]. По поли то формациям бетона сжато почислялись значения коэффициента у при длительном загружении, которые оказались равными 0,18—0,22.

Деформации растянутой арматуры обычных балок (рис. 5) и течение примерно 100 дией загружения увеличились на $15-17^6_{\ 0}$, что свидетельствовало о дальнейшем выключении из работы бетона растянутой зоны. В дальнейшем деформации арматуры стабилизировались. Для предварительно напряженных балок (ргс. 6) деформации арматуры в течение 80-100 дией продолжали унеличиваться, как и в ненапряжениях балках, затем начали уменьшаться и достигли своего начального значения. Это объясияется тем, что деформации сжатой зоны бетона при загружении балки не полностью погащают предварительное напряжение арматуры F_{ii} . В дальнейшем, при проявления ползучести бетона сжатой зоны предварительные напряжения арматуры F_{ii} полностью погащаются и она начинает работать на сжатие. В

результате этого точка приложения усилия обжатия удаляется от пентра тяжести сечения, увеличивая тем самым момент обжатия бетона. Гак, в образце J16-4-1 (1) момент обжатия сразу же после вагружения равный 567 κ z. , после 337 дней выдержки балки под

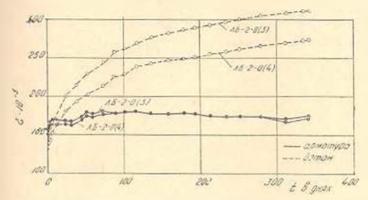


Рис. 5. Деформации бетона и арматуры во времени для образнов с ненапрягаемой арматурой.

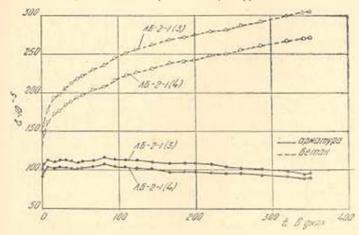


Рис. 6. Деформации бетона и арматуры во времени для образцов с предварительно напряженной арматурой.

вагрузкой оказался равным 682 кг. м. т. е. увеличился на 20%. В образце ЛБ-2—1 (3) момент обжатия во времени увеличился на 18%.

Отношение полных экспериментальных прогибов, соответствующих 1000 диям загружения, к кратковременным оказались для всех балок в пределах 1.8—1.9. Предварительное напряжение арматуры не повлияло на эту величину. Величину коэффициента у для расчета прогибов литоиднопемзобетонных балок от длительной нагрузки можню рекомендовать принять равным 0,18 для конструкция со средним процентом армирования, эксплуатируемых в условиях указанного выше темп ратурно-влажностного режима. Расчет полных прогибов балок по СН и П с учетом у=0,18 дал удовлетворительные результаты (табл. 2). Наибольшее отклонение в 19° в сторону запаса деформа-

ций получилось для образиа ЛБ-4—1 (1). Для остальных балок от клонение менее 90 в. Таким образом, исследование работы обычных ипредварительно напряженных изгибаемых конструкций из легких бетонов, армированных стержневой арматурой, выявило, что расчет деформаций от кратковременной и длительно действующей нагрузки можно вести по СНиП—В 1—62 при соответствующем учете упругопластических свойств бетона.

Лаборатория сопротивления железобетона АИСМ

Поступило 11.XI.1965

ม. ร. เก๋ฐเนษล์ขอนษ

AIV ԴԱՍԻ ՉՈՂԱՅԻՆ ԱՄՐԱՆՈՎ ԲՆԱԿԱՆ ԼՖԻՉՆԵՐՈՎ ԹԵԹԵՎ ԲԵՏՈՆԵ ԾՈՎՈՂ ԷԼԵՄԵՆՏԵԵՐԻ ԴԵՖՈՐՄԱՑԻԱՆԵՐԻ ՀԵՏԱԶՈՏՈՒՄԸ

Udhahaid

Հոդվածում թերված են AIV դասի ամրանով լինոիդոպեմզաբետոնն և պերլիտոբևտոնն ծովող էլեմենտների կարճատն և երկարատն դեֆորմացիանն- րի փորձնական հետադոտման արդյունընհրը։

Ուսումնասիրուիյունները ցույց են տվել, որ ինին բետոնների ամրության մեծացման ձետ նրանց առաձգական հատկությունները բարելավվում ենն է զործակցի նշանակությունը, որը հաշվի է առնում բետոնի ոչ առաձգական դեդորմացիաները է կոշտության հաշվառըի դնպրում մինչև հեծանում հաշտաջարումը, առաջարկվում է ընդունել փոփոխական և կախված բետոնի ամբության մեծացման դեպքում 150-ից մինչև 400 կզմահարությունից։ Բնառնի ամրության մեծացման դեպքում 150-ից մինչև 400 կզմահարությունից։ Բնառնի ամրության մեծացման դեպքում հեշրածքի հաշվառըը ճարառաջացումից հետո կարևի է կատարիլ համաձայն նորմաների, նկատի ունենալով զործակցի արժերի փոփոխական մեծությունը՝ ըստ որում 150 ամրանիշից ցածրի դեպքում և -ի արժեքը ընդունվում է 0,4, 400 ամրանիշից բարձրի դեպքում՝ 0.5։ Բետոնի ամրության միջանկյալ արժեքների դեպքում և մեծությունը որոշվում է դծային ինտերպոլիցիայով։

Բեռի երկարատն ազդեցության դեպքում հեծանների լրիվ ձրվածքի հարաբերությունը կարձատեին ռաացվել է 1,8—1,9 հավասար և աշխատող աժրանում նախնական լարվածության առկալությունից անկար։ Լիթոիզոպեմդաբետոնն հծանների համար բեռի երկարատև ազդեցության դեպքում գործակիցը առաջարկվում է ընդունել 0,18։

ЛИТЕРАТУРА

- Ионнисян С. Г. Легкий бетон на природных заполнителях в предварительно напряженных конструкциях со стержненым армированием. Повестия АН. Армянской ССР, серия техи, наук, № 6, 1965.
- Шаминян С. А. Опытно-теоретическое исследование жесткости легкого железоботона. Лушамбе, 1958.
- 3. Бетонные и железобетонные конструкции, Нормы проектирования. СПиП11—В.1—62.
- 4. Гвоздев А. А., Дмитриев С. А., Немировский Я. М. О расчете перемещений (про-

- тибов) железобетонных конструкции по проекту новых норм (СНиНП—В.1—62), Журнал "Бетон и железобетон", № 6, 1962.
- Муришев В. И. Тренинноустойчивость, жесткость и прочность железобетона, М., 1950.
- Фигаровский В. В. Унеличение протибов железобетонных балок при длительном действии нагрузки. Журнал "Бетон и железобетон". № 11–1962.