энергетика

А. А. АСЛАМАЗЯН

ИССЛЕДОВАНИЕ ВЕЛИЧИНЫ ИНЕРЦИОННОГО МОМЕНТА ГИДРОАГРЕГАТА В ПЕРЕХОДНЫХ РЕЖИМАХ ЕГО РАБОТЫ

1. Переходные процессы в гидровгрегатах, возникающие внезлиными изменениями патрузки, могут протекать как при отключенном так и не отключенном из общей энергетической системы генераторе. В случае изолированной работы ГЭС, в результате появления ускорения и потоке рабочего колеса возникают инерционные силы, которые могут оказать существенное влияние на величнику движущего иомента турбины. В случае же работы ГЭС в энергетической системе, скорость его вращения в течения исего времени переходного режима остается неизменной, при этом, если имеет место качание агрегата, на валу появится знакопеременире ускорение $\frac{dw}{dt}$ и соответствующая инерционная сила. Явление переходного процесса будет протекать по разному, в зависимости от типа и параметров турбин (расходные характеристики Q(a), моменты инерции вращающихся частей J и т. д.) и от ускорения $\frac{d}{dt}$. Уравнение удельной работы турбины для динамических режимов, предложенное Тено [1]:

$$H_{1} = \frac{U_1 V_1 \cos z_1 - U_2 V_1 \cos z_2}{g} = 2A \frac{d_2}{dt}$$
(1)

не позволяет с достаточной точностью оценить влияние указанных выше параметров на работу турбин. Рассмотрим эту задачу в другом аспекте. Пусть в начальный момент неустановившегося режима, когда $\frac{1}{dt} = 0$, турбина имеет расход Q_0 . к.п.д. τ_0 , момент на валу \mathcal{M}_0 .

Через некоторый промежуток времени, когда $\frac{d\omega}{dt} \neq 0$, эти парамет-

ры приобретают новые, соответствующие динамическим режимам значения Q_x , z_{d} , M_x , . Исходя из условия, что наклон расходных характеристик статических и динамических режимов работы турбины остается исилменным, что было доказано экспериментально в [2], выражение динамического момента турбины можем предстанить в виде:

$$\mathcal{M}_{a}^{t} = \mathcal{M}_{c}^{t} + 2AK_{q} \frac{ds}{dt} = \mathcal{M}_{c}^{t} = \mathcal{M}_{i}$$
(2)

Таким образом в неустановившихся режимах работы турбины, на валу появляется некоторый дополнительный момент *М*₁, являющийся следствием возникновения ускорения вращающихся масс.

Движение агрегата можно описать уравнением:

$$J \frac{da}{dt} = M_x^* - M^* \cdot$$
(3)

Ня основании уравнений (2) и (3), получим:

$$(J \pm 2AK_{\rm s}) \ \frac{dm}{dt} = M_{\rm c}^{\rm t} - M^{\rm r}. \tag{4}$$

В зависимости от характера переходного процесса (сброс или наброс нагрузки) величина 2*АК*_q как бы увеличивает или уменьшает момент инерции агрегата.

Исключив из уравнений (2) и (3) величину $\frac{d}{dt}$, получим:

$$\mathcal{M}_{a}^{\mathsf{T}} = \mathcal{M}_{c}^{\mathsf{T}} \pm \frac{2AK_{q}}{J} \left(\mathcal{M}_{A}^{\mathsf{T}} - \mathcal{M}^{\mathsf{r}} \right). \tag{5}$$

В частности при $M_t = 0$ т. с. при полном сбросе нагрузки с вала турбины, уравнение (5) будет иметь вид:

$$M_{x}^{\tau} = \frac{IM}{J + 2AK_{q}} \tag{6}$$

а выражение (3) примет вид:

$$M_{s}^{i} = J \left| \frac{d\omega}{dt} \right|_{s}$$
⁽⁷⁾

В силу (6) и (7), получим:

$$\left|\frac{d}{dt}\right|_{I} = \frac{1}{J + 2.4K_q}$$
(8)

В случае, если инерционная составляющая момента *М*, равна пулю, т. с. хяряктеристики динамических и статических режимов одинаковы, получим:

$$J\left|\frac{d\omega}{dt}\right|_{c} = M_{c}^{2}, \qquad (9)$$

а следовательно из выражений (8) и (9) будем иметь:

$$\left|\frac{d\omega}{dt}\right|_{z} = \frac{J}{J \pm 2AK_{q}} \left|\frac{d\omega}{dt}\right|$$
(10)

Как видно, изменение скорости по времени при неустановившемся режиме зависит не только от вращающего момента, по и от величним махового момента, наклона расходных характеристик K_q и конструкции колеса турбины A_*

С целью определения всличины M₁, входящего в выражение
 автором проведены экспериментальные исследования на модельной

гядротурбине, где обеспечивается постоянство напора в статических и динамических режимах ее работы. Таким образом на результаты экспериментов влияние изменения напора исключено.

Экспериментальная установка, схематически представленная на рис. 1, состояла из вертикальной турбины 1 открытого типа, расположен-

Рис. І. Схема модели открытого типа.

ной между верхним 2 и нижним 3 резервуарами, в которых создавался соответствующий напор. Максимальный расход установки составлял 300 л/сек. Верхний резервуар имел значительную поверхность (34 м^{*}), что нозволяло сохранить постоянство напора. Эта же цель достигалась системой сбросных водосливов, с помощью которых сбрасывался излишек воды при изменении горизонта в резервуаре. Направляющий аппарат турбины о поворотнолонаточный, с количеством лопаток Z = 12и высотой b 100 мм. Исследования производились на рабочем колесе K 245, диаметром D = 0,3 м с углом установки лопастей $z = +5^\circ$.

С целью исключення влияния изменения давления под рабочим колесом на режим работы, отсасывающяя труба была удалена и рабочее колесо сообщалось с атмосферой. Величина нанора равная $H_p = 1,1$ м определялась как разность между верхним уровнем воды в резервуаре и осью рабочего колеса. Расход волы в турбине измерялся с помощью прямоугольного тонкостенного водослива 10, установленного в нижнем резервуаре. Величину нагруз ки на валу изме-

ð

ряли фрикционным тормозом 8, соединенным с пружинными весами 9. Для исследования динамических режимов была создана специальная методика и аппаратура [3].

Динамический режим создавался следующим образом: заторможенное рабочес колесо при определенном открытки направляющего аниарата а, напоре Н, и расходе Q, мгновенно освобождалось и на осциллографе производилась снихронная запись по времени: скорости вращения вала турбины о, с вомощью тахогенератора переменного

тока ТЭ-45; ускорения угловой скорости 📶 датчиком типа ДМС-3.

что позволило определить динамический момент по времени М₂(I) -На рис. 2 приведены типичные осциялограммы изменения во времени чисел оборотов и ускорения вала турбины, при открытив напраяляющего аппарата $a_0 = 1.0$ и 0.7. Из осциалограмм усматривается, что в случае полного сброса нагрузки, момент на валу турбины расходуется на увеличение кинетической энергии и на преодоление потерь. Продолжительность переходного периода, благодаря малости маховых масс турбниы, небольшая. Увеличение скорости вращения до максимального значения и соответственное уменьшение момента до нуля достигается для t = 1.0 сек при a₀ = 1,0 и t = 1,5 сек TIDH $a_0 = 0, \overline{r}$. Соответствующей методикой обработки осцилограмм [3] бы-

penna de

ли построены динамические режимные характеристики $M_1(t); n_2(t).$ При значениях а₀ = 1.0; 0.7; 0.5 кривые представлены на рис. З. Для сопоставления статических и динамических характеристик в одних и тех же координатах, графическим интегрированием была установлена зависимость статических величии от времени. Моментные характеристики М (и), сиятые в статических (кривые 1) и динамических (кривые 2) режимах, для тех же открытий направляющего аппарата, приведены на рис. 4. На кривых, подтвержденными повторчыми опытами, крестиками нанесены расчетные значения моментов и чисел оборотов.

Согласно представленным на рис. 3, 4 кривым при всех значениях а, моментные характеристики динамического и статического режимов существенно отличаются друг от друга, что является следствием влияния инерционной составляющей момента, возникающей на валу турбины в переходных режимах.

В табл. 1 даются величины расхождений режимных кривых.

 $M_{a}(t)$ от $M_{c}(t)$ и $n_{a}(t)$ от $n_{c}(t)$. В табл. 2 приведены расхождения моментных характеристик M(n) статических и динамических режимов работы турбины.

Следует указать, что в дальнейшем ряд авторов, как Тиме В. А. [5], Кривченко Г. Л. [6], Прокофьев В. П. [7] теоретически доказали необходимость учета также влияния инерции жидкости в рабочем колесе на характеристики. К сожалению эти работы не доведены до расчетной стадии и не предлагается соответствующая методика рас-

Рис. 3. Режимные характеристики n (t) и Af (t).

Рис. 4. Моментные характеристики М (л).

-							
1	a	б	л	11	11	72	- 7

Расхождения кривых $M_2(t)$, $n_1(t)$ от $M_c(t)$, $n_2(t)$ в процентах

t cen		M(t)		n (1)			
	a ₀ =1,0	$a_y = 0.7$	$a_0 = 0.5$	$a_0 = 1.0$	<i>a</i> ₀=0,7	a0,5	
0,2 0,4 (1,6	9 16 8	14 12 18	18 16 5	10 8 6	15 11	3 7 4	

7

Таблица 2

Расхождения кривых M_{1} (n_{3}) от M_{c} (n_{1}) в процен- тах							
п обім	a ₀ - 1,0	<i>∆</i> _e = 0,7	a _e =0.5				
100 200 300 400 500	12,0 9,0 10 16 23	7 12 20 24 35	16 25 32 37 39				

чета. Одняко результаты наших расчетов, учитывающих лишь влияние инерционной составляющей момента, без учета влияния инерции жидкости на коротком участке, хорошо совпадали с многократными экспериментами.

Резюмируя изложенное отметим, что при работе турбины с изменяющейся во времени скоростью, в результате наличия сил инерции, появляется дополнительный вращающий момент, равный

$$M_4 = 2AK_q \left| \frac{dw}{dt} \right|$$

Величина этого момента зависит от конструкции, быстроходности рабочего колеса, открытия направляющего аппарата и утлового ускорения. Полученные расчетные величины были подтвержены специальными экспериментами, проведенными автором. Многократные опыты, проведенные при постоянном напоре, показали на существенное расхождение динамических моментных и режимных кривых от статических, доходящее до 20% для оптимальных режимов работы турбины. Влияние изменения напора во времени на динамические характеристики можно учесть по предложенной автором методике [4].

Поступнао 20/ХП 1965-

L. U. UULUFU25UL

ՀԻԳՐՈԱԳՐԵԳԱՏԻ ԻՆԵՐՑԻՈՆ ՄՈՄԵՆՏԻ ՈՒՍՈՒՄՆԱՍԻՐՈՒՄԸ ՆՐԱ ԱՇԽԱՏԱՆՔԻ ԱՆՑՈՎԻԿ ՌԵԺԻՄՆԵՐՈՒՄ

Ամփոփում

Հիդրոագրեգատի աշխատանքի անցողիկ ռեժիմներում, երբ ըստ ժամանա։ կի արազունյունը փոփոխվում է, շնորհիվ իներցիոն ուժերի առկայունյան առաջանում է հավելյալ պտտվող ժոմենա։

Այդ իներցիոն մոմենտի մեծությունը կախված է ազրեզատի տիպից, արագրնքացությունից, նրա ուղղատու ապարատի բացման և արադացման մեծություններից։

Հաշվարկմանը ստացված մնծունյունները հաստատված են թաղմանիվ փորձերով, որոնք կատարվել են բաց տիպի հիդրոտուրբինի մոդելի վրա, նրա աշխատանթի դինամիկ և ստատիկ ռեժիմներում, Հաստատուն Տնշման, այսինջն հիդրավլիկական Հարվածի բացակայունյան պայմաններում։

Հետազոտությունները ցույց են տվել, որ իներցիոն մոմենտի ազդեցությունը բավականին զգայի է, և ազրեզատի աշխատանքի նորմալ ռեժիմների ամար դինամիկ և ստատիկ բնութագրերի տարբերությունը հասնում է մինչև 20%-ի։

ЛИТЕРАТУРА

- Tenot A. Turbines hydrauliques et regulateurs automatiques de vitesse, Paris, 1935, v. IV.
- Асламазян А. А. Работа гидротурбным на нереходных процессах. "Известия АН АрмССР⁺, ОТН. т. XIV, № 3 1961.
- Асламазян А. А. Энергетические испытания гизротурбин при неустановившихся режимах. "Известия АН Армянской ССР*, ПІ, т. ХІІ, № 5, 1959.
- Асламазян А. А. О характеристиках гидротурбии при переходных происссах. НДВШ, "Энергетика", № 2, 1958.
- Тиме В. А. Уточнение метода расчета переходных процессон регулирования гидротурбины. Эпергоманиностроение. № 6, 1962.
- Кривченко Г. Л. Характеристики гидротурбин при переходных процессах. Писсстия АН СССР⁴ (ОТН. Энергетика и транспорт), № 1, 1963.
- Прокофьев В. Н. Учет изаимодействия потока с ограничивающими его стенками при анализе переходных процессон. Известия АШ СССР* (ОТН. Энергетика и транспорт), 3, 1963.

g