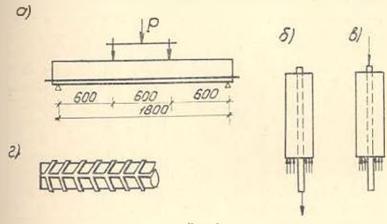
Հեխնիկական գիտութ, սերիա

XVIII, № 5, 1965


Серии технических паук

СТРОИТЕЛЬНЫЕ КОНСТРУКЦИИ

А. Б. ПИРАДОВ, Л. С. ШАКАРЯН

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПРОЧНОСТИ В ВЕРМЕНИЯ АРМАТУРЫ С ЛЕГКИМИ БЕТОНАМИ НА ПРИРОДНЫХ ЗАПОЛНИТЕЛЯХ

В Армянском НИИ стройматериалов и сооружений с 1963 г., начаты систематические исследования сцепления арматуры с бетоном, которые проводились как на призмах размером 10×10×40 и 15×15×45 см на выдергивание и продавливание арматурных стержней так и на озлках 14×24×200 см, подверженных изгибу (рис. 1). Вид применам примена

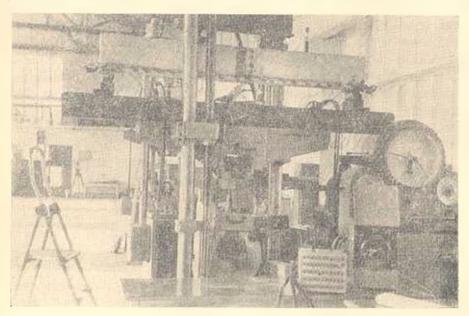
 $P_H = 1$

виемых заполнителей и составы бетона с проектируемыми прочностиии сведены в таблицы. 1 и 4. Образцы из обычного бетона на кварцевом песке и базальтовом щебне были изготовлены как эталонные,
аля сравиения. Круглые стержии диаметром 8 и 12 жм, а также перводического профиля диаметром 12 мм были уложены в призмы
размером 10×10×40 см. Стержии периодического профиля диаметром 18 и 25 мм—в призмы размером 15×15×45 см. Фиксирование
стержией в форме производилось в горцах, путем пропуска их в торвевых плитах через специально высверленые в середине плиты отверстия. Для определения прочности бетона одновременно с призмами
бетона образцов осуществлялся двумя методами: нормально-влажноветона образцов осуществлялся двумя методами: нормально-влажно-

Таблица 1

Вил	,	Manuscraw of the true to the control of the control	Расход	Актиппость				
бетона	Вид заполинтеля	Маркирояка образцов призм	цемент	песок	щебень	вқон	ES/CH ₃	
Лет кил	Кармрашенский шлак	1 R; 1 RK; 3 R; 3 RR; 4 R; 4 RK; 5 R; 5 RK;	326 402	291 350	330 245	304 373	419 419	
	Дитондиля пем за	7 n; 7 nn; 8 n; 8 nn; 10 n; 10 nn; 11 n; 11 nn; 16 n1 17 n	158 236 300	550 160 454	630 690 750	152 304 162	-119 550 550	
Тяжелын	Базальтоный щебеный квар- ценый лесох	13 г; 13 пт. 14 г. 14 пт	191	755	1190	190	-119	

стным хранением во влажных опилках и гечение месяца; пропаркой в лабораторной пропарочной камере при температуре 85 С с режимом пропаривания 3—6+3 часа (эти образцы при маркировке обозначены буквой П). После месячного хранения во влажных опилках образцы хранились до срока испытания в лабораторном помещении. Там же хранились и образцы после пропарки. Образцы с арматурой диаметром 12 мм, испытывались в месячном возрасте. Основная серия, составлениям из образцов всех диаметров, включая арматуру диаметром 12 мм, испытывалась в трехмесячном возрасте. В основном образцы испытывались на выдергивание стержней из приям. Только небольшое количество образцов было испытано на продавливание стержней (табл. 3). Все испытания призм проводились на 100-тонном прецезионном гидропрессе _Рейли —


Для определения начала нарушения сцепления на вызагруженном конце круглой арматуры устанавливался пидикатор с ценой деления 0,01 мм.

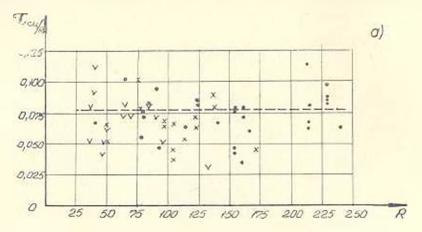
Железобетониме балки армировались двумя стержиями периолического профиля диаметром 16 мм из стали класса A-II с пределом ярочности $\sigma_{\rm c} = 5300~kz/cm^2$ в растянутой зоне и двуми стержиями диаметром 8 мм из стали класса A-I в сжатой зоне. Кроме того балки ярмировались хомутами из арматуры диаметром 6 мм. с нагом хомутов для бетона М-100—110 мм, для бетона М-200—200 мм. Бетон балок изготовлялся в бетономешалке и укладка его производилась в четаллические формы при помощи глубинного вибратора. Балки распалубливались через три дня после бетонирования и в течение месяна хранились во влажных опилках. После этого, вплоть до испытания, балки хранились в лабораторном помещении.

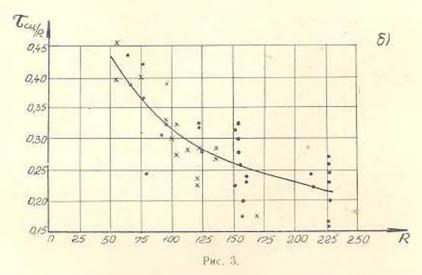
Испытание балок производилось в возрасте два месяца на гидропрессе ГРМ-1. Нагрузка передавалась в третях пролета ступенями примерно 0.1 от разрушающей нагрузки с выдержкой на каждой ступени 15 минут. Замеры деформаций бетона производились гензодатчиками с базой 50 мм. Тензодатчики приклеивались по всей дливе балки на уровне растянутой арматуры с шагом 50 мм. Кроме того по высоте балки замерялись деформации бетона для определения эпоры напряженного состояния при различных этапах загружения. Тензолатчиками с базой 10 жм, приклеенными к арматуре до бетонирования и заизолированными эпоксидной мастикой, измерялись внутренние напряжения и арматуре, как в середине пролета, так и на опорных участках. Прогиб балки измерялся в середине пролета, индикатором с ценой деления 0,01 мм. Для определения сдвижки свободных коицов рабочей арматуры по отношению к торцу балки на концах стержней были установлены апалогичные индикаторы. Балка под нагрузкой с установленными приборами приведена на рис. 2.

В процессе нагружения балки, после появления трещин микросковом определялось их раскрытие на уровне растянутой арматуры. Замерялось гакже расстояние между трещинами. Вместе с балками испытывались контрольные бетонные кубики, призмы и восьмерки.

2. Результаты испытания сведены в таблицы 2 и 3. В таблицах приведенные значения являются средними, полученными по испытанию

Pirc. 2.


Tabanua 3


Возраст об-	Маркировка образцен	Расмеры об- разнов	Hpoundern be rosed in K2 Cu2	Hawerp apad	7(II K2 C.M	ren R	. сп - ueb	Способ петытания
lua ec	16 д	15×15×15 10×10×40 10×10×40 15×15×45 15×15×45 10×10×40 15×15×45 10×10×40 15×15×45 10×10×40 15×15×45	227	12 n 12 n 12 n 12 n 12 n 12 n 12 n 13 n 18 n 18 n	22,2 37,6 19,5 36,7 18,6 37,9 20,0 61,3 59,2 56,4 14,4 24,8 14,2	0,194 0,098 0,166 0,086 0,162 0,082 0,167 0,286 0,27 0,260 0,248 0,230 0,063 0,1165 0,246	1,98 1,9 1,97 1,89	продавливание продавливание выслергивание продавливание продавливание продавливание продавливание продавливание продавливание продавливание продавливание

трех образцов. Как видно из табл. 2 с унеличением прочности бетона величина его сцепления с враматурой увеличивается. Вместе с тем, размер диаметра арматуры не оказывает существенного влияния на величину сцепления. Данные таблиц 2 и 3 в виде отдельных точек

		Возраст об-									
	14 :::	1	EII 01	10 1	8 11.1	00	5 nk	5 8	3 DX	ယ *	Серия об
-	75.3	⇒c	170	158	113	10	191	79,5	74.6	10.7	Прочность образион кг/см-
	122	120	26	1019	122	22	120	25	7.73	12	Диаметр арматуры, мм
3	51 -1	22 7 6 7	35 KD	010 010	29 1 7 2	± 30	28	5 9	30 a	27 6 6 9	N.c.
	0.078	0.277	0.182	0 185	0 283	0.307	0 272	0 248	0,406	0,434	R
	Ö	<u>د</u> ت	5	⁰ 1	5 24	6	√ 06	ಬ	1 2	02	cu FA Juep
			rpex	месячи	oro a	озрас	ra er				Возраст об-
	3	- E	5	11 2	7 11.1	~1 ts	4 2	×	N N	- 2	Серия об- разцов
	0	154	120	152	91.5	122	136	50	5	76,6	Прочность образиов кг,см
	12	122	12 =	122	12 E	ថឆ	13 TO	12	1213	15 E	Диаметр арматуры, м.н
	3 "	ರ ~1 ಬ	28 0	33 7 1 95	ωN	39 5	36 8	_ 35 80 84	32 22 24	ද න	. C.M
,	0,30	010	0,233	0 0 2 2	0 35	0 324	0.23	0 285	0.453	(1 367 (1 076	20 1
	ос Ст	9,32	3,53	(C)	9	3 9	0,44	3.28	6,94	300	ed cuch
	× 5.25	± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	25 II	2 2 2 2	20 00	00 OV	20 00	20 50	ф п	38 0 9	Диамегр армятуры мм
	22	7	27,4 32,9	47.5 11.75	0.05	3 to 2	12,03	37, 8 12, 55	20 50	3 05 14	C.M.
	0.034	940 0	0 2 8 0 74 0 0 3	0 312 0 321 0 077	U 388	0 081	0,089	0 136	0 05	0.051	2 4

приведены на рис. 3. На рис. За представлены данные, полученные по исследованию 1963 г. (1). Пунктирная линия, показанная на рис. 2а, соответствует уравнению $\tau_{\rm cu}$ R=0.077. Ниая картина наблюдается при

арматуре периодического профиля. Здесь с увеличением прочности бетона величина сцепления также увеличнацется, по при этом отношение за R паласт. Экспериментальные точки напесены на рис. 36. Показанная кривая соответствует уравнению:

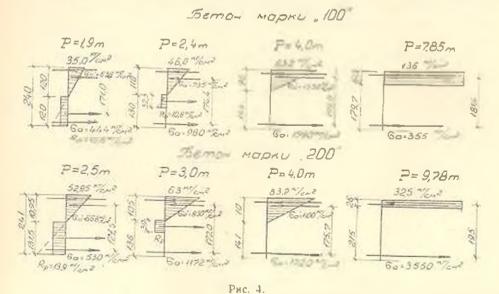
$$\frac{\tau_{\text{oi}}}{R} = \frac{70}{110+R}$$
. (1)

В опытах с арматурой периодического профиля также, как и с круглой арматурой, не было замечено существенного влияния изменения диаметра на величину сцепления. Здесь опять-таки лимитирующим является прочность, самого бетона. Пропаренные образцы и образцы нормально-влажностного хранения всех диаметров и профилей дали при-

мерно одинаковую прочность спепления в зависимости от полученной прочности бетона. На одной серии образцов (16 и 17 серии табл. 3) было изучено влияние размеров образцов на величину сцепления, а также изменение неличины сцепления при испытании арматуры на ныдергивание и продавливание. Изменение сечения бетона с 10×10 см на 15×15 см дает увеличение сцепления на $10^{9}/_{0}$, что может быть объяснено влиянием усадки. При испытании прматурных стержией на продивливание величина сцепления, как и следовало ожидать по сравнению с испытанием на имдергивание, несколько увеличивается (на $2 + 8^{9}/_{0}$), что ячляется следствием поперечных деформаций арматурного стержия. Учитывая сказанное, при составлении гряфиков рис. 3, все полученные результаты собраны в один график без разделения на позрастные показатели, метолы набора прочности бетона, диаметра арматуры, сечения и метолики яспытания.

3. Испытацию ж. 6. балок предшествовало испытацие контрольных кубиков, призм и носьмерок, с целью определения характеристик бетона. Результаты испытания сведены и табл. 4. Как видно из табл. 4 с упеличением прочности бетона отношение R_g/R_{ap} уменьшается, что по всей пероятности, связано с полиженной прочностью легкого впиолнителя на растяжение. С увеличением прочности бетона наблюдается увеличение прочности его на растяжение, что связано с увеличением объема цементного камия в бетоне. Упруго-пластический момент сопротивления легкого бетона W принимался в зависимости от прочности бетона по данным, полученным Б. Пирадовым и А. А. Аракеляном.

Таблица 4


Вид	Марки- ровка балок	Расход матерна- лов на 1 м² бе- лона в кг			ая проч-	ная проч-	ть бетона экение	Модуль упругос- ти секущей Е, 02	иенг уп-	ьная сжи-	ть цемен-	
заполиителя		11	П	Щ	В	Кубиковая пость кг/с.	Призмен пость ка	Прочнос на растя кглем	Модуль ти секуг	Коэффициент ругости	Предельная маемость бет с.10-5	AKTHBHOC T3 K2/c,N
Литоидная пемза	5-1: 5-2	13.0	1000		-	147	1000	10.9	100 · 103	0,98	Hara and	550
	B −3; B −4 B −5	300	454	750	162	309	258	13,9	153 · 10 ^a	0,98	314	550

По замеренным деформациям средней зоны балок построены эпюры напряженного состояния для различных этипол загружения (рис. 4). Переход от деформаций к напряжениям производился по формуле

$$z_0 = z_0 v E_0, \tag{2}$$

где E_b модуль упругости бетона, полученный при испытании бетоных призм.

- коэффициент упругости бетона при сжатии, полученный тахже при испытании бетонных призм:
- полная деформация бетона, полученная при испытании балки.

Момент трещинообразования определялся из условия равновесия (рис. 4). В практических расчетах для определения момента трещинообразования пользуются формулой [2].

$$M_{\tau} = R_{p} \left[F_{op} z_{op} + \frac{n}{v_{p}} \left(F_{a} z + F' \frac{x_{\tau} - a'}{i - x_{\tau}} \right) \right].$$
 (3)

где $R_{\rm p}$ — предел прочности бетона на растяжение.

При заданной эпюре напряженного состояния (рис. 4) в выражении (3) неизвестным является только v_0 — коэффициент упругости бетона при растяжении.

Для обычного бетона СНиП рекомендует принимать значение $v_p = 0.5$ [3]. Для изученного состава легкого бетона значение v_p определялось по формуле (3). Кроме того значение v_p определялось из выражения:

$$\frac{1}{v_0} = \frac{c_0}{n \cdot R_0}$$
(4)

усредненные значения v_p , полученные по обоим методам равны: для балок I и 2—0.51, для балок 3, 4 и 5—0.36. Анализ полученных данных показывает, что при низких прочностях бетона (Б—1 и Б—2) значения v_p совпадают с значениями, рекомендуемыми для обычного бетона. При более же высоких прочностях легкого бетона (Б—3, Б—4 и Б—5) значение v_p уменьшается. Это подтверждает высказанное ранее соображение, что прочность на растяжение легкого бетона низких марок соответствует прочностям, полученным при растяжении обычного бетона. С увеличением же прочности легкого бетона проч-

ность на растяжение, по сравнению с обычными бетонами, уменьшается. Вместе с тем известно [4], что начало трещинообразования железобетонных балок на легких и тяжелых заполнителях имеют одинаковое значение.

При более высоких прочностях легкий бетон в железобетонных балких имеет более низкое значение коэффициента упругости, т. е. вбладает большими пластическими деформациями, а следовательно и большим моментом сопротивления при растяжении. Это и подтверждается проведенными испытаниями.

Обработка результатов испытания балок для определения величины сцепления арматуры с бетоном производилась по известной тео-

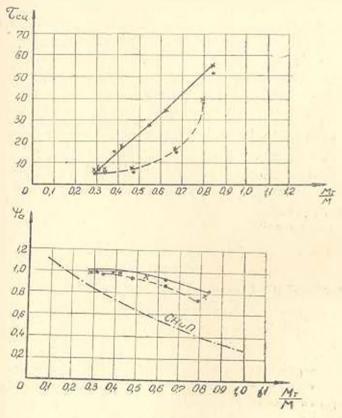


Рис. 5.

рии проф. В. И. Мурашева [2] с использованием имеющихся данных для легких бетонов, по следующей формуле:

$$z_{in} = \frac{K_1 \kappa u R_0}{I_i}.$$
 (5)

Значения коэффициентов, входящих в формулу (5) заимствованы из [2 и 3].

По данной методике для каждой балки определялось значение те на всех этапах загружения. Изменение значения тек и да в зави-

симости от отношения M_t/M приведено на рис. 5. Как видно из графика, максимальное сцепление между арматурой и бетоном наблюдается при нагрузке, соответствующей началу трещинообразования. При дальнейшем увеличении нагрузки трещины раскрываются и сцепление между трещинами начинает падать. Коэффициент ϕ_a , из опытов получился равным, при нагрузке соответствующей трешинообразованию, для бетона прочностью $147 \ \kappa z/cm^2 = 0.7$; для бетона прочностью $309 \ \kappa z/cm^2 = 0.8$. При дальнейшем увеличении нагрузки он постепенно увеличивается и достигает своего предельного значения $\phi_a := 1$ при разрушении, т. е. тогда, когда сцепление полностью нарушено. На рис. 5 приведена также кривая изменения ϕ_a , рекомендуемая СНиП для обычного бетона [5]. Как видно из графика, значения ϕ_a для легкого бетона получились отличными от величин нормируемых СНиП. Это по всей вероятности связано с работой легкого бетона на растяжение и резким уменьшением сцепления при увеличении нагрузки.

Срашивая полученные осредненные значения сцепления арматуры с бетоном при выдергивании стержней из призм с максимальными значениями сцепления при испытании болок на изгиб имеем:

для бетона прочностью 147 кг/см² — при выдергивании $\tau_{cu} = 39 \text{ к//см}^2$; при изгибе $\tau_{cu} = 40 \text{ кг/см}^2$ (расхождение $-2^0/_0$); для бетона прочностью 309 кг/см² — при выдергивинии $= -62 \text{ кг/см}^2$;

Армянский НИИ строительных материалон и сооружении

при изгибе $= 60 \ \kappa z/cM^2$ (расхождение +2.50%).

Поступнао 15.1 1965

u, e, apparing, j, ii, caracsav

ՀԱՄԵՍԱՐԱՆ ՎԳԱՇՐՈՏԱԴ <mark>ԻնՊԵԳ ԻՈՐԵՐ</mark>ԵՐ ՇՆԵՐԱԵՐ ԵՍ ՎՇԱՐԴԱՄ ԳՐՈՒԹԳՈՐԵՐ ԳԵՐԵՐԻ ԻՐԵՐԵՐ ԻՐԵՐԵՐ ԵՐԵՐԵՐԵՐ

Ասկոփում

Հոդվածում ընրված են ամրանային ծողնրի և քենն ընտոնների հարակրց ման ամրության ուսումնասիրությունների արդյունընները քառւննասիրությունների արդյունընները քառւննասիրությունների միրու ծողնրի դուրս բաշումով և ծրուման ննխարկված հեծանների վրա, օգտագործվել են 75-ից մինչև 200 կզ/ում ամրության բնառններ՝ լիթորդային պիմզայի լցիչով։ Պրիդմաները փորձարկ- վել են մեկ ամսական և երեր ամսական հասակում, հեծանները երկու ամսական հասակում, հեծանները երկու ամսական Պրիդմաները կորձարկերն, պուրս բաշող և հղմող ուժերի մեծությունները որոշվուց բաց, կլոր պրուիլի ծողնրի համար որոշվել է նաև ձողի շրեռնավորված ծայրի տեղափոխման սկիզբը։ Հեծանները փորձարկելիս չափվել են բետնի դեֆորմացիաները, ինչպես հեծանն որջ երկարությամբ ձգվող ամրանի հարքության վրա, այնպես և ողջ բարձրությամբ՝ քերչըի մեջտեղում։

Փորձարկումների արդյունքները բերված են աղյուսակ 2 և 3-ում, ինչպես նաև նկ. 3-ում։ Գրանց հիման վրա (5) բանաձևով որոշվել են հարակցման ուժի մեծությունները՝ «« ինչպես նաև է կործակցի արժեքները։ Պոր ասերի ձոդերը դուրս բաշելիս ստացված հարակցման ուժերի միլինացված արժեքների և հեծանների փորձարկումներից ստացված հարակցման ուժերը առավելագույն արժեքների համադրումը տալիս է լավ համընկնուս Այդ կապակցությամբ, ամբանի և բեառնի հարակցման հարցերը ուսումնասիրելիս, կարող են սդտադործվել և առաջարկվել բետոնն պրիզմաներից ձողեռի տուրս

ЛИТЕРАТУРА

- Пирадов Л. В. Исследование спепления гладком арматуры и бетоном ил. Кармрашенском шлаке. Журп. ,Промывленность Армении¹, № 9, 1964.
- 2. Мурашев В. И. Железобетонные конструкции. Госстройиздат, 1962.
- 3. Строительные нормы и правила. Часть II, раздел В. гл. 1, 1962.
- Симонов М. З. Бетов и железобетов на пористых заполнителях. Госстройиздат, 1955.
- Петрова К. В. Леформация инецентренно сжатых элементов и стадия П. Сб. НИИЖБ под ред. А. А. Гиолдева "Расчет конструирование элементов жедезобетонных конструкций". Госстройнздат, 1964.