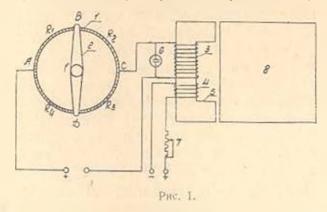
ЛИГЕРАТУРА

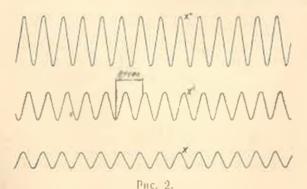
- Мхитарян А. М., Александрян Г. А., Атаян Э. А. Водный баланс озера Севан. Результаты комплексных исследований по севанской проблеме, г. 1. Ереван, 1961.
- 2. Сванидзе Г. Г. Метолика стохастического моделирования гидрологических рядов и некоторые попросы многодетнего регулирования речного стока Тр Института энергетики АН ГрузССР, т. XIV Тбилиси, 1961.

HRHPAX .1 .W.

СТЕНД ДЛЯ ТАРНРОВКИ ДАТЧИКОВ КОЛЕБАТЕЛЬНОГО ДВИЖЕНИЯ


Испытание сооружений натурных размеров или их моделей на динамическую нагрузку требует предварительной тарировки намерительной аппаратуры. В последнее время для измерения колебательного движения часто применяются датчики сейсмического типа.

Наибольшее распространение получили индукционные (динамические) датчики, э.д.с. которых на выходе проворционально скорости колебательного движения. Однако с появлением тензометрических осциллографов с низкочастотным гальванометром и интеграторами и дифференциаторами удается в узком диапазоне частот записать смещение или ускорение колебательного движения. К таким датчикам относятся СПМ—16, К—001 ВПБ, СПН ВЭГИК, жидкостные акселерографы и другие. При применении этих датчиков часто определение чувствительности и частотной характеристики, производится косвенными методами. Однако из экспериментов видно, что косвенный метод тарировки дает расхождение с прямым методом.


Имеющиеся вибрационные стенды, особенно с механическим приводом (кривошинные или эксцентриковые) не полностью отвечают всем требованиям предъявляемым к тарировочным стендам, из-за затруднения в регулировке амплитуды колебанкя, а также возникновения плразитных вибрация. В электродинамических вибрационных стендах получивших широкое распространение трудно получить низкочастотные колебания [1]. Предложенный ранее нами лабораторный вибрационный стол [2] позволяет получать колебательные движения с частотой от 1 до 200 гд, но имеет (малую мощность на выходе. В этой заметке предлагается метод получения токов низкой частоты необходимой мощности. Принципиальная схема показана на рис. 1, пренции работы которого заключается в следующем: При врашении ползунка 2 на участке АС создается переменное сопротивление от минямума при совпадении ползунка с точками АС до максимума в точке ВД, где полное сопротивление при этом будет

$$\frac{1}{R_a} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right) + \left(\frac{1}{R_2} + \frac{1}{R_4}\right).$$

При подключении цепи постоянного тока, вследствие переменности сопротивления 1, в катушке 5 создается пульсирующее магцитное поле, частота которого равна числу оборотов ползунка 2. Устранение влияния

искрообразования в контактах полаунка на электромагнит достигается подключением в цень катушки конденсатора б. Для компенсации начального магнитного поля прелусмотрена компенсационная обмотка 4, создающая магнитное поле обратного знака. Необходимая для компенсиции магнитного поля сила тока катушки 4 регулируется реостатом 7. Таким образом, при вращении ползунка 2 в катушке 5 создается пульсирующее магнитное поле с напряженностью от нуля до какойто величины, которое создает вынужденное колебательное движение вибрационного стола 8. При этом сила магнитного поля в диапазоне низких частот практически не зависит от скорости вращения ползунка 2, из-за незначительной величины реактивного сопротивления обмотки 3, и всецело зависит от величины силы тока питания.

Описанным методом можно получить колебательное движение вибростола необходимой частоты и мощности. Требуемое число оборотов можно получать с помощью мотора постоянного тока с применением редуктора. Для повышения эффективности электромагнита частота собственных колебания вибростола должна быть равной частоте пульсирующего тока, что достигается изменением жесткости стола.

Конструкция вибростола подробно описана в [2]. В осуществленном вибростоле частоту колебаний можно изменять в пределах от нуля до 100 герц при полном отсутствии паразитных колебаний.

На рис. 2 приведена запись смещения, скорости и ускорения вибростола,

AHCM

Поступило 19,5, 1965

ЛИТЕРАТУРА

I. Нориш Ю. Н. Измерение инбрации. Маштит, М., 1956.

 Хачиян М. Г. Лабораторный вибрационный стол. Плиестия — АН АрмССР гом XV, № 6, 1962.

M. C. MHERH

О МАГНИТНОЙ ТЕКСТУРЕ, СОЗДАВАЕМОЙ ПРИ НИЗКИХ ТЕМПЕРАТУРАХ, ОХЛАЖДЕНИЕМ В МАГНИТНОМ ПОЛЕ

Изменение свойств феррита кобяльта, при охлаждении образца до минусовых температур, в присутствии поля наблюдалось С. А. Медведевым. При исследовании автором феррита никеля с вариацией $\mathrm{Fe_2O_3}$ от 48 мол $^{\circ}$ о 52 мол $^{\circ}$ 0 наблюдался подобный эффект. Вис-

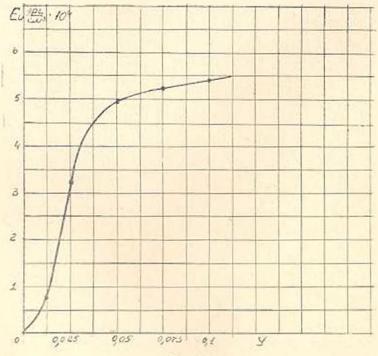


Рис. 1.

сте с гем выявился ряд закономерностей, и, что в особенности примечательно, изменение намагниченности насыщения, различное для изаимноперлендикулярных направлений текстурированного образца в зависимостя от недостатка или избытка Fe_2O_3 . При данном значении