Shiphinipus գիտութ. abrha

XVII. № 4, 1964 Серия технических наук

СТРОИТЕЛЬНЫЕ КОИСТРУКЦИИ

A. B. AKOBSH, B. A. KAPAHETSH

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ЖЕСТКОСТИ ТУФОЖЕЛЕЗОБЕТОННЫХ БАЛОК ПРИ ДЛИТЕЛЬНОМ **ДЕЙСТВИИ НАГРУЗКИ**

В Армянском научно-исследовательском институте стройматериалов и сооружений в период 1962-63 гг. проводились работы по изучевию жесткости изгибаемых туфожелезобетонных балок под длительной нагрузкой. Исследованию были поднергнуты 12 туфожелезобстоиных балок, из коих шесть балок при кратковременном нагружении и шесть балок при длительно действующей нагрузке. Для сравнения в качестве эталона при длительной нагрузке были также испытаны две железобстонные балки на обычном (тяжелом) заполнителе. Все балки длиной 280 см имели прямоугольное сечение 10×16 см² с односторонней продольной арматурой. Процент армирования туфожелезобетонных балок соглавлял $\mu = 0.48\%$, $\mu = 1.16\%$, и $\mu = 2.28\%$, а балок эталонов из тяжелого железобетона на базальтовом шебие $\mu = 1,16^{0}$. В балках с высоким процентом армирования ($\mu=2,28^{\circ}/_{\circ}$), где могло быть разрушение от касательных напряжений пне зоны чистого изгиба была установлена добавочная арматура. Балки были армированы круглой гладкой стальной арматурой марки ст. 3 (класса A-1) для $\mu = 0.48^{\circ}/_{\circ} 2\Phi6.4$, $(\sigma_{\rm r}=2950~\kappa z/c.m^2)$, and $\mu=1.16^{\circ}/_{\circ}-2\Phi10^{\circ}(\sigma_{\rm r}=3170~\kappa z/c.m^2)$, and $u = 2,28-2\Phi14$ ($a_x = 3190$ кг/см-). Одновременно с балками были изготовлены контрольные бетонные кубы, восьмерки и призмы. Бетои приготовлялся ручным способом, а укладка его производилась с понощью вибратова. Вызревание бетона до 28-дневного возраста происходило во влажных опилках. Далее до 60-дневного возраста образны хранились в сухом состоянии при относительной влажности воздуха помещения 54-65%

Длительным испытаниям балок предшествовали кратковременные испытания. Испытание балок под кратковременной и длительной нагрузками производилось с помощью рычажных установок.

Основные результаты кратковременных испытаний туфожелезобетонных балок представлены в табл. 1. Прогибы балок измерялись мессурами с точностью до 0,01 мм. По длине балки в зоне чистого нагиба, с помощью рычажных тензометров с базой 2 см. с точностью ло 1 минрони, определялись деформации крайних волокон бетона-Быжи под кратковременной нагрузкой доводились до разрушения.

На основании данных, приведенных в табл. 1 можно утверждать

что расхождение между результатами опыта в формулами СНвП [1] при кратковременном нагружении не превышали 8%.

Серия балок	Процент армирования м	Afap (Kz .V)		Мрэт (ка м)		<i>f</i> "—про- гиб при	4 11
		по опыту	no CHaft [1]	по опыту	no Chull		J ₀ Hp
1,-1	0.48	92	90	276	250	4,0	1
		88	90	276	250	3,2	1 750
[-1]	1,16	92	90	600	618	4,7	1 510
		88	90	600	618	4,9	1 490
1 _K →111	2,28	102	90	1040	1110	7.7	1 312
		88	90	1030	1110	6,9	348

Длительные испытания балок производились под нагрузкой 0,65 $M_{\rm pas}$, которая для балок с малым процентом армирования ($u = 0.48^{\circ}i_0$) была равна 180 кгм; при и = 1.16% - 400 кгм; при = 2,28% - 740 кгм; для балок на тяжелом бетоне—413 кгм. Разрушающая нагрузка M_{рыз} определялась по результатам кратковременных испытаний (табл. 1). Под каждой рычажной установкой испытывались две балки (близнены). Нагрузка прикладывалась ступенями, равными 0,1 Мого, двумя равными сосредоточенными силами в третьях пролета. Все испытания были начаты в 60-дневном возрасте бетона, при этом прочность на сжатие туфобетона была равна в среднем 270 какм², а на растижение 15,5 кг/км²; для тяжелого бетона соответственно 315 кг/см² и 19 кг/см³. Модуль упругости туфобетона испытанных на сжатие призм оказался равным 180000 кгјем-, а тяжелого бетона—280000/кг/см². Прогибы измерялись и трех местах по длине балки, под грузами и в середине пролета, с помощью переносных индикаторов с ценой деления 0,01 мм. Эгими же приборами измерялась возможная осадка опор. Деформация растинутой арматуры и деформация сжатой зоны бетона измерялась стационариыми индикаторами на базе 40 см с ценой деления 0,01 им, а также переносными индикаторами по базе 20 см с ценой деления 0,001 мм. Отсчеты по приборам брались во время приложения грузки, через каждые 15 мин; после приложения нагрузки через 30 мин. Затем ежедневно, а в дальнейшем с еще большими интервалами. При снятии отсчетов по приборам велись наблюдения за температурой и относительной влажностью воздуха помещения, а также за появлением новых и раскрытием старых трещин. Температура в помещении в период длительных испытаний колебалась в пределах от 23 до 26C; относительная влажность воздуха в пределах 54-65%.

Усадочные деформации туфобетона исследовались на армированных и неармированных призмах. Теформации ползучести туфобетона изучались при центральном сжатии призм при интенсивности напряжения 10 кг_гсм². Кривые длительной деформации сжатой зоны бетона и растянутой арматуры туфожелезобетонных балок приводятся на рис. 1 и 2.

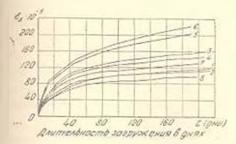


Рис. 1. Относительные деформации бетона в сжатой зоне под длительной нагрузкой. Криные 1 и 2 относятся к балке 1₂—1; кривые 3 и 4—балке 1₂—11; кривые 7 и 8—балке 1₄—11.

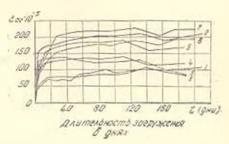


Рис. 2. Относительные деформации растянутий арматуры болок пол даительной нагрузкой Пояснения к кривым даны из рис. 1

Деформации бетона в сжатой зоне балок за 205 суток увеличиавсь почти в 2,5 раза, а в арматуре—от 1,1 до 1,4 раза. В неармированиых призмах, испытанных на сжатие, относительная деформация ползучести за 205 суток составила 0,21 ми/м, а в армированных призмах—0,11 мм/м.

Усадка бетона за 205 суток в псармированных туфобетонных призмах составила 0,35 мм/м, а в армированных—0,20 мм/м.

На рис. З приводятся криные прогиба балок в середине пролета

при различных процентах армирования. Как видпо из кривых нарастание прогибов в начальный период испытания протекает интенсивно, а затем их рост плавно загухает. После 80-дневной выдержки под нагрузкой кривые прогибов идут в дальнейшем параллельно друг другу. Чем больше процент армирования балок, тем меньше возрастание прогибов. В табл. 2 приводятся экспериментальные величины прогибов, в середине пролета бялок, т

Рис. 3. Прогибы бал ж пол дантельпой нагрузкой, Пояснения к кривым даны на рис. 1.

гибов, в середине пролета бялок, под кратковременной и длительной нагрузками.

Таблица 2 Экапериментальные величины протибов балок под кратконременной и длительной (205 суток) нагрузок

Серия балок	Бетон	Провеня армирования балок р	Прогиб от кратковре- менной наг- рузки (.и.и)	Прогиб от дан тельной нагрузки (м.м.)	Поаный прогнб (.ч.и)
	На гуфовом заполнителе	0,48 1,16 2,28	6,00 8,60 10,50	6,80 8,90	12.8 17,5 21,5
114-11	Обычный	1,16	7,6	6.3	13,9

Данные, приведенные в табл, 2 показывают, что за 205 суток нагружения балок их прогиб по сравнению с кратковременным прогибом почти удвоился. Рост прогибов во времени в основном следует объяснить увеличением ползучести сжатой зоны бетона, что отмечается и в [2—5].

Следуя [4], путем экстраполяции опытных данных, полученных при загружении балок в течение 205 суток, были вычислены величины предельных прогибов балок. Эти величины приведены во второй пятой строке табл. 3. В этой же таблице приведены величины про-

Таблица 3 Сопоставление расчетных и экспериментальных результатов

Серия железобетонных балок	4-1	14 11	h-in	H _a ~11		
Процент армирования балок ч	0.48	1,16	2,28	1,16		
При слыные пригибы балок от ползуче- сти бетона, получениые при экстрано- ляции экспериментальных ининых (м.и.)	8,5	10,8	13,0	8,3		
Прогибы балок в мж от полаучести бего- на, вычисленные по формуле СНиП [1]	7,8	9,8	17,1	6,3		
То же, по с учетом экспериментальных характеристик бетона, полученных авто- рами • • • • • • • • • • • • • • • • • • •	8,5	10.7	12.3	8,2		
/n — предельные полные прогибы балок при экстраполяции экспериментальных данных (мм) · · · · · · · · · · · · · · · · · ·	14,5	19,4	23,5	15,8		
Иредельные полные прогибы балок пычис- ленные по СНиП 1	13.2	19.1	29,3	13,9		
То же, но с учетом экспериментальных ха- рактеристик бетона, полученных авторами	11,5	19,4	23,5	15,8		
$0 = f_n/f_0 \cdots$	2,42	2,26	2,24	2,10		

гибов балок, вычисленные по формулам СНиП [1] с соответствующими нормативными характеристиками а также величины прогибов балок, вычисленные по тем же формулам СНиП, но с учетом экспери-

ментальных характеристик бетона, полученных авторами для изученных ими бетонов. Отношения экспериментальных величин полных прогибов балок при длительном их нагружении к протибам балок при кратковременном нагружении приводятся в последней строке табл. 3. Это отношение оказалось равным 2,24 ÷ 2,42 для туфожелезобетонных балок и 2,1 для балки из тяжелого бетона.

Анализ данных, приведенных в табл. З показывает, что расчетные формулы Строительных норм и правил по проектированию бетонных и железобетонных конструкций [1] дают результаты довольно близкие к экспериментальным, в особенности при учете действительных характеристик бетоня.

AHCM

Поступило 13.11 64.

2. 4. LUANDBUR, 4. IL GUPUSBUR

Hoffmhnid

ալաստանի Շինանլուների և կառուցված քների դիտա-հետազոտական ինստիտուտում 1962—1963 Թվականների ոն Թացքում աշխատանքներ են տարվել բեռի կարճատե և հրկարատև ասդեցությունից երկաթառւֆաբետոնե հեմանների կոշտությունը ուսուննասիրելու ուղղությամբ։

Փորձարկման են ենթյարկվել 12 հեմաններ. 6 հեմաններ փորձարկվել են ժինչև ըալթայում կարճատև ացգող բնոից և ճիշտ այդ հեծաններից 6 հատ տեղադրվել են երկարատե փորձարկվուն։ Համեմատության համար երկարատե ազգող թնոից փորձարկման են տեղադրվել նաև երկու սովորական ծանր թետոնե հեժաններ։ Օգտադործվել է Արարտաի գործարանի «600» մարկալի ցեմ ենտ։ Հեմանների երկարու թվունն է 2,8 մ, հարվային թեռիչքը՝ 2,4 մ, կտրը qud_{pp} 16 × 10 mt: $h_{e}q_{p}$ μμημιστρικό μυση h_{e} μμημιστρικό h_{e} μ h_{e} μ և մեծ դ. 2,28⁶, թետոնի խորանարդալին ամրությունը բեռնելու պահին աու ֆարևառնի համար 🖟 💶 270 📉 🔰 իսկ սովորական ժանր բևառնինը՝ $R_k = 315$ կզ/ա d^3 , սկսբնական առաձգականության մոդուլը առաջին դեպքում 180000 կզ/ավ., իսկ հրկրոյո դեպքում՝ 280000 կզ ավ. Որպես ամրան օգտագործվել է կլոր հարթ պողպատու հեմրանուվորումը բոլոր հեծաններում միակողմանի է, կտրված ըր՝ ուղղանկլուն։ Եվ կարճատև և երկարատև վարձարկումենթը կատարվել են լծակների միջոցով։ Երկարատև փորձարկումներում, միաժա-- մանակ մի լծակային սիստեմում փորձարկվել են 2-ական հեծաններ — երկվոր**լա**կ ենը։ Ճկված ըները, սեղժված բետոնի և ձգված ամրանի դեֆորմացիաների չափուժները կատարվել են մշտական և շարժական ինդիկատորների, ինչպես նաև լծակային տենղոմետրերի միջոցով։ Բերված են բետոնի ֆիզիկա-մեխանիկական բնությագրերը, որոնք որոշվել եւ բետոնե խորանարդների, պրիզմաների. ունլակների և հեժանների փորձարկումների ժիջոցով։ Հեժանների երկարատև փորձարկման ընթվացրում օգի ջերմաստիճանը կարմել է 24 + 2-, իսկ հարա ահրական խոստվունվունը՝ 390 . Միաժաժանակ փորձարկումներ են կաo. TH. № 4

տարվել նաև սողջի և կժվման դեֆորմացիաների արժեջները, կատարված են արդ հայտնաբերված բոլոր դեֆորմացիաների արժեջները, կատարված են արդ հայտնաբերի արժեջները, կատարված են արդեր հայտնարկան հայտարված են արդեր հայտնարկան հայտնական հայարական հայարական հայտնարկան հայարական հայար

ЛНТЕРАТУРА

- 1. СНиП 11—В. 1—62 Бетойные и железобетонны конструкции. Нормы проективы вания, Госстройнздат. М., 1962.
- 2 Немировский Я. М. Жесткость изгибаемых железобегонных элементов и расправне тне трещим в инх. Сборних статей "Исследопания обычных и предваритем импраменных железобегонных конструкций» ЦНИПС, Стройнадат, 1949.
- Улициий М. М., Чжан Чжун-Яо. Голация А. Б. Расчет железобетонных конструция с учетом алительных процессов. Киев, 1961.
- 4. Фигаровский В В. З величение прогибов железобетонных бляох при заительно действии нагрупки. Жури, "Бетом и железобетон", № 11, 1962.
- 5. Власов А С. Экспериментальные исследования жестности керамингожелезобаты ных балок при дангельном действии нагрупки. "Известия АН АрмССР" (серт. ТН), XVI, № 5, 1963.