ZUBUUSUUP APSNP BBNP UUCPP UQAUBPU UYUABUPU НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИ NATIONAL ACADEMY OF SCIENCES OF ARMENIA ДОКЛАДЫ QUANPB SUBP REPORTS

Zшипр Том Volume

2021

№ 4

МАТЕМАТИКА

УДК 517.9

121

Г. С. Григорян 1 , А. Г. Камалян 2 , Г. А. Киракосян 3

Операторы L-Винера – Хопфа с кусочно-непрерывным матричным символом в лебеговых пространствах со степенным весом

(Представлено академиком А. Б. Нерсесяном 4/Х 2021)

Ключевые слова: безотражательный потенциал, оператор \mathcal{L} -Винера – Хопфа, матричный символ, оператор Фредгольма.

1. Введение. Понятия операторов \mathcal{L} -свертки и \mathcal{L} -Винера — Хопфа введены в [1]. В основе определения этих операторов лежит понятие спектрального преобразования оператора \mathcal{L} , самосопряженного в $L_2(\mathbb{R})$ и порожденного дифференциальным выражением

$$(\ell y)(x) = -y''(x) + v(x)y(x), \qquad x \in \mathbb{R}, \tag{1.1}$$

где

$$\int_{-\infty}^{\infty} (1+|x|)v(x)dx < \infty. \tag{1.2}$$

Операторы \mathcal{L} -свертки и \mathcal{L} -Винера — Хопфа в случае нулевого потенциала совпадают с классическими оператором свертки и оператором Винера — Хопфа. Для потенциалов $v \neq 0$ наиболее простую структуру операторы \mathcal{L} -Винера — Хопфа имеют, когда v является безотражательным потенциалом, т.е. имеет представление

$$v(x) = -2\frac{d^2x}{dx^2}(\ln \Delta(x)), \tag{1.3}$$

где

$$\Delta(x) = \det \left[\delta_{ij} + \frac{m_i \exp(-(\lambda_i + \lambda_j)x)}{\lambda_i + \lambda_j} \right]_{i,j=1,\dots,N},$$
(1.4)

 δ_{ij} — символ Кронекера, λ_k , m_k (k=1,...,N) — положительные числа, причем $\lambda_k \neq \lambda_j$ при $i \neq j$. В [2-5] изучены свойства фредгольмовости, полуфредгольмовости и обратимости операторов \mathcal{L} -Винера — Хопфа в случае безотражательного потенциала. Оператор $A: X \to Y$, где X, Y — банаховы пространства, называется фредгольмовым, если его образ замкнут (т.е. $\operatorname{Im} A = \overline{\operatorname{Im} A}$) и конечномерны его ядро $\ker A \coloneqq \{x \in X; Ax = 0\}$ и коядро $\operatorname{Coker} A \coloneqq \frac{Y}{\operatorname{Im} A}$. Число $\operatorname{Ind} A \coloneqq \dim \ker A - \dim \operatorname{Coker} A$ называется индексом оператора A.

Ниже для линейного пространства (алгебры) X через X^n ($X^{n\times n}$) обозначается множество всех вектор-столбцов порядка n (матриц порядка $n\times n$) с элементами из X. Для линейного оператора $A:X\to Y$ (X,Y- линейные пространства) оператор $\mathrm{diag}(A,\dots,A):X^n\to Y^n$ также будем обозначать через A. Через m(a) будем обозначать действующий в функциональных пространствах оператор умножения на функцию (матриц-функцию) a:m(a)y=ay. Пусть $\mathbb{R}=\mathbb{R}\cup\{\infty\}$ и $\mathbb{R}=\mathbb{R}\cup\{\pm\infty\}$ соответственно одноточечная и двухточечная компактификации \mathbb{R} . Через $PC\coloneqq PC(\mathbb{R})$ будем обозначать алгебру кусочно-непрерывных функций на \mathbb{R} , т.е. функций a, для которых в каждой точке $x_0\in\mathbb{R}$ существуют пределы $a(x_0-0)\coloneqq \lim_{x\to x_0-0}a(x)$, $a(x_0+0)\coloneqq \lim_{x\to x_0+0}a(x)$, причем $a(\infty-0)\coloneqq a(+\infty)=\lim_{x\to +\infty}a(x)$, $a(\infty+0)\coloneqq a(-\infty)=\lim_{x\to -\infty}a(x)$.

Пусть ρ — степенной вес, т.е. вес вида

$$\rho(x) = |x + i|^{\mu_{\infty}} |x|^{\mu_{0}} \prod_{j=1}^{m} |\alpha - \beta_{j}|^{\mu_{j}},$$

где $\mu_{\infty}, \mu_0, \mu_j, \beta_j \in \mathbb{R}$, $j=1,\dots,n$, а $L_p(E,\rho)$, 1 , — лебегово пространство с нормой

$$||f||_{p,\rho} \coloneqq \left(\int\limits_{\mathbb{R}} |f(x)|^p \, \rho^p(x) dx\right)^{1/p},$$

где E либо \mathbb{R} , либо $\mathbb{R}_{\pm}=\{\pm x>0; x\in\mathbb{R}\}$. Далее предполагается, что

$$\mu, \mu_0, \dots, \mu_m \in \left(-\frac{1}{p}; \frac{1}{q}\right),$$

где $\mu \coloneqq \mu_{\infty} + \mu_0 + \mu_1 + \dots + \mu_m$, а 1/p + 1/q = 1. Заметим, что это условие является необходимым и достаточным, чтобы ρ был весом Макенхаунта, т.е. удовлетворяло условию A_n :

$$\sup\left(\frac{1}{|\mathsf{I}|}\int\limits_{\mathsf{I}}\rho(x)^p\ dx\right)^{1/p}\left(\frac{1}{|\mathsf{I}|}\int\limits_{\mathsf{I}}\rho(x)^{-q}\ dx\right)^{1/q}<\infty,$$

где I пробегает все ограниченные интервалы вещественной переменной R, а |I| – длина интервала I (см., например, [6]). Важную роль в дальнейшем играют числа $\nu_{\infty}=1/q-\mu, \, \nu_0=1/p+\mu_0.$

В [7] получен критерий фредгольмовости и вычислен индекс матричного оператора Винера – Хопфа в пространствах $L_n^n(\mathbb{R}_+,\rho)$ в случае кусочно-непрерывного символа.

В данной работе мы распространяем эти результаты на операторы *L*-Винера – Хопфа в случае произвольного безотражательного потенциала.

2. Оператор *L*-Винера – Хопфа. Рассмотрим дифференциальное выражение ℓ (см. (1.1)) с потенциалом ν , удовлетворяющим (1.3), (1.4). Условие (1.2) выполняется автоматически. Собственные значения самосопряженного оператора Штурма – Лиувилля \mathcal{L} , порожденного дифференциальным выражением ℓ , совпадают с числами $\lambda_1, ..., \lambda_N$ (см., например, [8]). Ортонормальная система собственных функций $\varphi_1, ..., \varphi_N$ однозначно определяется системой линейных уравнений

$$\varphi_k(x) + \sum_{s=1}^N m_k m_s \frac{e^{-(\lambda_k + \lambda_s)x}}{\lambda_k + \lambda_s} \varphi_s(x) = m_k e^{-\lambda_k x}, \qquad k = 1, \dots, N; \ x \in \mathbb{R}.$$

Рассмотрим функции

$$u^{-}(x,\lambda) = t(\lambda)e^{i\lambda x} \left(1 - \sum_{k=1}^{N} \frac{m_k e^{-\lambda_k x}}{\lambda_k - i\lambda} \varphi_k(x)\right),$$

$$u^{+}(x,\lambda) = e^{-i\lambda x} \left(1 - \sum_{k=1}^{N} \frac{m_k e^{-\lambda_k x}}{\lambda_k + i\lambda} \varphi_k(x)\right), \quad x,\lambda \in \mathbb{R},$$

где коэффициент прохождения
$$t(\lambda)$$
 определяется равенством
$$t(\lambda) = \prod_{k=1}^N \frac{\lambda + i\lambda_k}{\lambda - i\lambda_k}.$$

Функции $u^{\mp}(x,\lambda)$ при каждом $\lambda \in \mathbb{R} \setminus \{0\}$ являются ограниченными решениями уравнения $\ell y = \lambda^2 y$ и порождают интегралы

$$(U_{\mp} y)(\lambda) = \int_{-\infty}^{\infty} u^{\mp}(x,\lambda)y(\lambda)dx, \qquad \lambda \in \mathbb{R},$$

которые сходятся по норме $L_2(\mathbb{R})$. Эти интегралы определяют ограниченные операторы $U_{\mp}: L_2(\mathbb{R}) \to L_2(\mathbb{R})$ (см. [1, 3, 8]).

Под спектральным преобразованием оператора $\mathcal L$ мы понимаем оператор

$$U := m(\chi_+) U_- + m(\chi_-) J U_+ : L_2(\mathbb{R}) \to L_2(\mathbb{R}),$$

где χ_+ (χ_-) – характеристическая функция \mathbb{R}_+ (\mathbb{R}_-) , а $J: L_2(\mathbb{R}) \to L_2(\mathbb{R})$ – оператор, действующий по формуле (Jy)(x) = y(-x). Оператор U удовлетворяет равенствам

$$U^*U = I - P, \qquad UU^* = I,$$

где I — единичный оператор, а P — ортогональный проектор на подпространство $span\{\varphi_1,...,\varphi_n\}$. Кроме того, на всюду плотном в $L_2(\mathbb{R})$ множестве имеет место равенство $U\mathcal{L}U^* = m(\lambda^2)$.

Будем считать, что v = 0 также является безотражательным потенциалом, соответствующим случаю N=0. В этом случае оператор $U=U_{+}$ и совпадает с преобразованием Фурье $F: L_2(\mathbb{R}) \to L_2(\mathbb{R})$:

$$(Fy)(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\lambda x} y(x) dx.$$

Функцию $a \in L_{\infty}(\mathbb{R})$ назовем U-мультипликатором в $L_p(\mathbb{R}, \rho)$, если для каждого $y \in L_2(\mathbb{R}) \cap L_p(\mathbb{R}, \rho)$ функция $U^*m(a)Uy$ также принадлежит $L_2(\mathbb{R}) \cap L_p(\mathbb{R}, \rho)$ и кроме того при некотором постоянном c > 0 неравенство

$$||U^*m(a)U||_{p,\rho} \le c||y||_{p,\rho}$$

 $\|U^*m(a)U\|_{p,\rho}\leq c\|y\|_{p,\rho}$ имеет место одновременно для всех $y\in L_2(\mathbb{R})\cap L_2(\mathbb{R},\rho).$ Оператор $U^*m(a)U$ допускает непрерывное продолжение до действующего на $L_p(\mathbb{R},
ho)$ ограниченного оператора, который мы будем обозначать через $W^0_{\mathcal{L}}(a)$ и называть оператором \mathcal{L} -свертки на $L_2(\mathbb{R},
ho)$ с символом a.

Множество U-мультипликаторов будем обозначать через $\mathcal{M}_{p,\rho,\mathcal{L}}$. Поскольку при v = 0 оператор U совпадает с преобразованием Фурье F, то в этом случае класс U-мультипликаторов совпадает с классом мультипликаторов Фурье $\mathcal{M}_{p,\rho}$ (см. [6]). Справедливо следующее утверждение.

Лемма 2.1. Пусть v — безотражательный потенциал и \mathcal{L} — соответствующий самосопряженный оператор, порожденный дифференциальным выражением (1.1). Тогда справедливо включение $\mathcal{M}_{p,\rho} \subset \mathcal{M}_{p,\rho,\mathcal{L}}$.

Пусть теперь $a \in \mathcal{M}_{p,\rho,\mathcal{L}}^{n \times n}$. Тогда оператор $U^*m(a)U$ допускает непрерывное продолжение до ограниченного оператора, действующего на $L_n^n(\mathbb{R},\rho)$, который мы также будем обозначать через $W_L^0(a)$ и называть оператором \mathcal{L} -свертки с матричным символом α .

Определим операторы $\pi_+^0: L_p(\mathbb{R}_+, \rho) \to L_p(\mathbb{R}, \rho), \quad \pi_+: L_p(\mathbb{R}, \rho) \to$ Определим оператор $L_p(\mathbb{R}_+,\rho)$ по формулам $(\pi_+y)(x)=y(x), x\in\mathbb{R}_+,$ $(\pi_+^0y)(x)=\begin{cases} y(x) & x\in\mathbb{R}_+, \\ 0 & x\in\mathbb{R}_- \end{cases}.$

$$(\pi_+^0 y)(x) = \begin{cases} y(x) & x \in \mathbb{R}_+ \\ 0 & x \in \mathbb{R}_- \end{cases}$$

 $a \in \mathcal{M}_{p,\rho,\mathcal{L}}^{n \times n}$. Оператор $W_{\mathcal{L}}(a) \coloneqq \pi_+ W_{\mathcal{L}}^0(a) \pi_+^0 : L_p^n(\mathbb{R}_+, \rho) \to$ $L^n_p(\mathbb{R}_+, \rho), \ 1 будем называть оператором <math>\mathcal{L}$ -Винера — Хопфа с символом а.

3. Фредгольмовость оператора L-Винера - Хопфа. Класс мультипликаторов Фурье $\mathcal{M}_{p,\rho}$ (см. [7]) является банаховой алгеброй с нормой

$$||a||_{\mathcal{M}} \coloneqq ||W^0(a)||_{\mathcal{B}(L_p(\mathbb{R},\rho))}$$

Функции из PC, имеющие ограниченную вариацию, принадлежат $\mathcal{M}_{p,\rho}$. Через $PC_{p,\rho}$ обозначим замыкание всех функций PC, имеющих ограниченную вариацию в банаховой алгебре $\mathcal{M}_{p,\rho}$, а через $C_{p,\rho}(\overline{\mathbb{R}})$ обозначим алгебру $PC_{p,\rho} \cap C(\overline{\mathbb{R}})$. Имеет место включение $PC_{p,\rho} \subset PC$ (см. [6]).

Пусть $\nu \in (0,1), z_1, z_2 \in \mathbb{C}$. Множество

$$\mathcal{A}(z_1, z_2; \nu) \coloneqq \left\{ \frac{z_2 e^{2\pi(x+i\nu)} - z_1}{e^{2\pi(x+i\nu)} - 1} ; x \in \overline{\mathbb{R}} \right\}$$

является дугой окружности, соединяющей точки z_1 и z_2 .

Пусть $a\in PC^{n\times n}$ и $a=\left(a_{ij}\right)_{ij=1}^n$. Определим матриц-функцию $a_{p,\rho}\colon\dot{\mathbb{R}}\times\overline{\mathbb{R}}\to\mathbb{C}^{n\times n}$ по формуле

$$a_{p,\rho}(x,\xi) = \frac{-1}{e^{2\pi\xi(x+i\nu)} - 1}a(x-0) + \frac{e^{2\pi(\xi+i\nu)}}{e^{2\pi\xi(x+i\nu)}}a(x+0),$$

где $x \in \mathbb{R}$, $\xi \in \mathbb{R}$ и $v = \begin{cases} v_{\infty} & x \in \mathbb{R} \\ v_0 & x = \infty \end{cases}$ Образ каждой из компонент $\begin{pmatrix} a_{ij} \end{pmatrix}_{p,\rho}$ является непрерывной кривой в комплексной плоскости, поскольку в точке разрыва $x \in \mathbb{R}$ существенного образа a_{ij} точки $a_{ij}(x-0)$ и $a_{ij}(x+0)$ соединяются дугой $\mathcal{A}(a_{ij}(x-0),a_{ij}(x+0);v) = \{(1-\eta)a_{ij}(x-0)+\eta a_{ij}(x+0);\eta\in\mathcal{A}(0,1;v)\}$. В частности, образ функции $\det a_{p,\rho}$ также является непрерывной замкнутой естественным образом ориентированной кривой в результате добавления к существенному образу $\det a_{p,\rho}$ кривых $\{\det((1-\eta)a(x-0)+\eta a(x+0));\eta\in\mathcal{A}(0,1;v)\}$, соединяющих в точках разрывов $\det a(x)$, точки $\det a(x-0)$ и $\det a(x+0)$, $x\in\mathbb{R}$. Это обстоятельство позволяет в случае $\det a_{p,\rho}(x,\xi)\neq 0$ ($x\in\mathbb{R}$, $\xi\in\mathbb{R}$) корректным образом определить целое число wind($\det a(x)$), равное количеству оборотов вокруг нуля точки $\det a_{p,\rho}(x,\xi)$.

Теорема 3.1. Пусть v — безотражательный потенциал, $a \in (PC_{p,\rho})^{n \times n}$. Тогда оператор $W_{\mathcal{L}}(a)$ фредгольмов в пространстве $L^n_p(\mathbb{R}_+,\rho)$ тогда и только тогда, когда

$$\det a_{p,\rho}(x,\xi) \neq 0$$
 npu $\sec x \in \mathbb{R}, \xi \in \mathbb{R}$.

При выполнении этого условия

Ind
$$W_{\mathcal{L}}(a) = \text{wind}(\det a_{ij}).$$
 (3.1)

В случае, когда $\det a$ имеет лишь конечное число разрывов, формула (3.1) может быть записана в более прозрачной форме.

Пусть $x_1 < x_2 < \dots < x_m$ — все конечные точки разрыва функции $\det a$. Добавив к ним $x_0 \coloneqq -\infty$, $x_{m+1} \coloneqq +\infty$, и определим интервалы $\ell_k \coloneqq [x_k, x_{k+1}], k = 0, \dots, m$. Под непрерывным аргументом $\det a$ на ℓ_k мы понимаем произвольную непрерывную на ℓ_k функцию $\arg(\det a)$,

удовлетворяющую на ℓ_k равенству $\det a(x) = |\det a(x)|e^{i \arg(\det a(x))}$. Очевидно, что числа

$$\begin{split} & \operatorname{ind}_{\ell_0} a \coloneqq \arg a(x_1 - 0) - \arg a(-\infty) \\ & \operatorname{ind}_{\ell_k} a \coloneqq \arg a(x_{k+1} - 0) - \arg a(x_k + 0) \;,\; k = 1, \dots, m-1, \text{ и} \\ & \operatorname{ind}_{\ell_m} a \coloneqq \arg a(+\infty) - \arg a(x_m + 0) \end{split}$$

не зависят от выбора непрерывных аргументов. Формула (3.1) в данном случае принимает вид

Ind
$$W_{\mathcal{L}}(a) = mnv_{\infty} + nv_{0} - \sum_{k=0}^{m} \operatorname{ind}_{\ell_{k}}(\det a) - \sum_{k=1}^{m} \sum_{s=1}^{n} \left\{ v_{\infty} + \frac{1}{2\pi} \arg \xi_{s}(x_{k}) \right\} - \sum_{s=1}^{n} \left\{ v_{0} + \frac{1}{2\pi} \arg \xi_{s}(\infty) \right\},$$

где $\xi_1(x_k), ..., \xi_n(x_k)$ — все собственные значения матрицы $a^{-1}(x_k-0)a(x_k+0)$ (k=1,...,m); $\xi_1(\infty),...,\xi_m(\infty)$ — все собственные значения матрицы $a^{-1}(\infty-0)a(\infty+0)$, а через $\{\eta\}$ обозначена дробная часть действительного числа η . Переформулируем теперь теорему 3.1 в случае непрерывного на \mathbb{R} символа.

Теорема 3.2. Пусть v — безотражательный потенциал u $a \in \left(C_{p,\rho}(\overline{\mathbb{R}})\right)^{n \times n}$. Тогда оператор $W_{\mathcal{L}}(a)$ фредгольмов в пространстве $L^n_p(\mathbb{R}_+,\rho)$ тогда u только тогда, когда $\det a_{p,\rho}(x) \neq 0$ для всех $x \in \overline{\mathbb{R}}$, а числа

$$v_0 + \frac{1}{2\pi} \arg \xi_j$$
, $j = 1, ..., n$

не являются целыми ни при одном собственном значении ξ_i матрицы $a^{-1}(\infty-0)a(\infty+0)$.

B случае, когда оператор $W_L(a)$ фредгольмов, справедливо равенство

Ind
$$W_{\mathcal{L}}(a) = \operatorname{arg}(\det a) (-\infty) - \operatorname{arg}(\det a) (+\infty) + n\nu_0$$
$$-\sum_{j=1}^{n} \left\{ \nu_0 + \frac{1}{2\pi} \operatorname{arg} \xi_j \right\},$$

где $arg(\det a)$ – непрерывный на $\overline{\mathbb{R}}$ аргумент функции $\det a$.

¹Институт механики НАН РА

²Институт математики НАН РА

³Ереванский государственный университет

e-mails: hrayrgrigor@gmail.com_kamalyan_armen@yahoo.com_grigor.kirakosyan.99@gmail.com

Г. С. Григорян, А. Г. Камалян, Г. А. Киракосян

Операторы *L*-Винера – Хопфа с кусочно-непрерывным матричным символом в лебеговых пространствах со степенным весом

Понятия операторов \mathcal{L} -свертки и \mathcal{L} -Винера — Хопфа вводится заменой преобраования Фурье в определении оператора свертки, оператором сплетающий оператор Штурма — Лиувилля с оператором умножения. Рассматривается случай когда потенциал оператора Штурма — Лиувилля является безотражательным, а символ оператора \mathcal{L} -Винера — Хопфа кусочно-непрерывной матрица-функцией. Получены критерии фредгольмовости и формула для индекса в лебеговых пространствах со степенным весом.

Հ. Ս. Գրիգորյան, Ա. Հ. Քամալյան, Գ. Ա. Կիրակոսյան

Կտոր առ կտոր անընդհատ մատրիցային սիմվոլով \mathcal{L} -Վիներ – Հոպֆի օպերատորները աստիձանային կշռով լեբեզյան տարածություններում

Փաթեթի օպերատորի սահմանման մեջ, Ֆուրիեի ձևափոխությունը փոխարինելով օպերատորով, որը միահյուսում է Շտուրմ – Լյուվիլի և բազմապատկման օպերատորները, ներմուծված է \mathcal{L} -փաթեթի և \mathcal{L} -Վիներ – Հոպֆի օպերատորների գաղափարը։ Դիտարկվում է դեպք, երբ Շտուրմ – Լյուվիլի օպերատորի պոտենցիալը չանդրադարձող է, իսկ \mathcal{L} -Վիներ – Հոպֆի օպերատորի սիմվոլը կտոր առ կտոր անընդհատ մատրիցա-ֆունկցիա է։ Աստիձանային կշռով լեբեգյան տարածություններում ստացված են ֆրեդհոլմության հայտանիշ և ինդեքսի բանաձև։

H. S. Grigoryan, A. G. Kamalyan, G. A. Kirakosyan

L-Wiener – Hopf Operators with Piecewise Continuous Matrix-Valued Symbol on Lebesgue Spaces with Power Weight

The concepts of \mathcal{L} -convolution operator and \mathcal{L} -Wiener – Hopf operator is introduced by changing the Fourier operator in the definition of the convolution operator to the operator intertwining the Sturm – Liouville operator \mathcal{L} with the multiplication operator. It is considered the case when the potential of Sturm – Liouville operator is reflectionless and the symbol of the \mathcal{L} -Wiener – Hopf operator is a piecewise continuous matrix-function. Fredholm criteria and index-formulas on Lebesgue spaces with power weight are obtained.

Литература

- 1. *Камалян А. Г., Спитковский И. М.* Матем. заметки. 2018. Т. 104. Вып. 3. С. 407–421.
- 2. *Камалян А. Г., Караханян М. И., Оганесян А. О.* Изв. НАН Армении. Математик. 2018. Т. 53. № 3. С. 21–27.
- 3. *Hasanyan D., Kamalyan A., Karakhanyan M., Spitkovsky I.M.* Springer Proceedings in Mathematics & Statistics. 2019. V. 291. P. 175–197.
- 4. Asatryan H. A., Kamalyan A. G., Karakhanyan M. I. Reports NAS of Armenia. 2019. V. 119. № 1. P. 22–28.

- 5. Asatryan H. A., Kamalyan A. G., Karakhanyan M. I. Reports NAS of Armenia. 2019. V. 119. № 2. P. 103–109.
- 6. *Böttcher A., Karlovich Y. I., Spitkovsky I. M.* Convolution Operators and Factorization of Almost Periodic Matrix Functions. Basel, Birkhäuser. 2002.
- 7. Schneider R. J. Integral Equations. 1985. V. 9. P. 135–152.
- 8. Φ аддеев Л. Д. Итоги науки и техники. Сер. Современные проблемы мат. 1974. Т. 3, С. 93–180.