Տեխնիկական գիտութ. սերիա XVI, № 2-3, 1963

Серия технических наук

ГИДРАВЛИКА

э. т. джрбашян

ОБ ОТНОСИТЕЛЬНОЙ СКОРОСТИ ДВИЖЕНИЯ ТВЕРДЫХ ЧАСТИЦ В ТУРБУЛЕНТНОМ ПОТОКЕ

Изучение движения тяжелых частиц в турбулентном потоке является существенным при рассмотрении транспортирующей способности наносонесущего потока, ибо суммарное взаимодействие между твердыми частицами и жидкостью в основном обуславливается относительной скоростью между ними. При построении теории движения наносонесущих потоков, различные авторы по-разному подходят к решению этой сложной проблемы. Одни из них принимают продольные составляющие скорости частиц и потока одинаковыми, а вертикальные составляющие скорости отличающимся лишь на величину гидравлической крупности твердых частиц (М. А. Великанов, Г. И. Баренблатт). Тем самым силы сопротивления и работу взвешивания они относят только к части гидравлической крупности частиц в вертикальном направлении. Другие авторы (Ф. И. Франкль, В. Г. Саноян, А. К. Ананян и Г. С. Телетов), рассматривают наносопесущий поток как движение двух непрерывных сред.

Ряд исследователей изучает движение твердых частиц в турбулентном потоке, как движение дискретных тел. И поскольку в вопросах группового движения твердых частиц, даже в неподвижной среде, пока не все исследовано, то в некоторых случаях задача об относительной скорости твердых частиц и жидкости в качестве первого приближения упрощается и сводится к рассмотрению движения одиночной частицы в турбулентном потоке [1—6].

В работе [1], по-видимому впервые получены выражения относительных скоростей твердых частиц и жидкости для мелких наносов, с радиусом $r = 10^{-4} \div 10^{-2}$ см при линейном и нелинейном законах сопротивления. Процесс описанный в работе [1] скорее граничит с диффузией. Для случая нелинейного закона сопротивления в работе [1] применен анализ размерностей. Рассматривался также случай с синусоидальным законом изменения относительной скорости. В работе [2] выведены общие уравнения движения тяжелой частицы в турбулентном потоке при линейном и квадратичном законах сопротивле-

ния. Методом операционного исчисления дается решение этих уравнений, заранее принимая для турбулентных пульсаций их периодичность.

В частности, векторное уравнение движения тяжелой частицы для квадратичного закона сопротивления имеет вид:

$$(\rho_s D + \mu) \frac{dWr}{dt} + CW_r \quad w_r = -(\rho_s - \rho) D \frac{dW}{dt} + (\rho_s - \rho) Dg , \qquad (1)$$

где W(u, v) — вектор скорости потока, $W_s(u_s, v_s)$ — вектор абсолютной скорости движения частицы, $W_r(u_r, v_r)$ — вектор относительной скорости движения частицы и жидкости, ρ и ρ_s — плотности жидкости и частицы соответственно, D — объем частицы, g — вектор ускорения силы тяжести, μ — коэффициент присоединенных масс, C — коэффициент сопротивления.

В работах [3 и 4] приводятся аналогичные уравнения для линейного и квадратичного законов сопротивления и дается их решение с применением статистических методов исследования непрерывных полей. В указанных работах уравнения выведены для движения водяной капли в атмосфере, и потому в работе [4] пренебрежена р по сравнению с ρ_s , так как $\rho_s \gg \rho$. При рассмотрении же движения наносов в воде, где $\rho_s/\rho=1$, $3 \div 2$, 7 этого делать нельзя.

Рассмотрим плоскую задачу, направляя координатные оси X — в направлении движения и Y — в перпендикулярном направлении ко дну потока. Проектируем все силы, действующие на частицу, по направлению движения (ось X), тогда уравнение (1) примет вид:

$$(\rho_s D + \mu) \frac{dU}{dt} + C U_r^2 = -(\rho_s - \rho) D \frac{dU}{dt} + (\rho_s - \rho) D g \sin \alpha. \quad (2)$$

В работе сделана попытка решить уравнение (2) и эти результаты сравнить с данными эксперимента.

Введя обозначения
$$C = \frac{(\rho_s - \rho) \ Dg}{W_{cr}^2}, \ a = \frac{(\rho_s - \rho) \ Dg}{W_{cr}^2 (\rho_s \ D + \mu)},$$
 $K = \frac{\rho \ D + \mu}{\rho_s \ D + \mu}, \ l = \frac{(\rho_s - \rho) \ Dg \sin \alpha}{\rho_s \ D + \mu}.$

 $U_r = U_s - U$ и подставляя в уравнение (2) получим дифференциальное уравнение вида:

$$\frac{dU_s}{dt} + a \left(U_s - U\right)^2 = K \frac{dU}{dt} + I. \tag{3}$$

Учитывая, что в обычных русловых потоках, согласно экспериментам М. А. Великанова, Е. М. Минского и автора пульсационная составляющая скорости U'(t) составляет приблизительно $10-25^0/_0$ от осредненной скорости, для мгновенных скоростей принимаем выражение:

$$U(t) = \overline{U} + \varepsilon U_1(t), \tag{4}$$

где $\epsilon U_1(t) = U'(t)$ а $U_1(t)$ имеет порядок \overline{U} . Тогда для ϵ получим, что $0 < \epsilon < 1$. Решение уравнения (3) отыскивается при помощи рядов расположенных по степеням ϵ

$$U_s(t) = U_{s0}(t) + \varepsilon U_{s_1}(t) + \varepsilon^2 U_{s_2}(t) + \cdots$$
 (5)

Подставляя выражения (4) и (5) в уравнение (3) и приравнивая коэффициенты при одинаковых степенях є, получим бесконечную систему дифференциальных уравнений.

Остановимся на первых трех уравнениях этой системы.

Решение первого уравнения этой системы экспоненциально затухающее и при $t\gg T$, при $\frac{1}{T}=2\sqrt{|aI|}$, будет иметь вид:

$$U_{s0} - \overline{U} = \sqrt{\frac{l}{a}} = W_{c\tau} V \overline{\sin \alpha}, \qquad (6)$$

где $W_{\rm cr}$ — групповая скорость падения твердых частиц в жидкости.

Нулевое приближение в решении (3) дает продольную составляющую скорости падения частицы в ламинарном потоке движущемся со скоростью \overline{U} . Оно по существу не отличается от решения Панчева [3].

Решение второго уравнения с учетом (6) будет иметь вид:

$$U_{s_1} = K U_1 (t) + \frac{1 - K}{T} \int_{0}^{\infty} e^{\frac{\tau}{T}} U_1 (t - \tau) d\tau.$$
 (7)

Это решение отличается от решения Панчева [4] членом $KU_1(t)$. Решение третьего уравнения системы с учетом (7) будет иметь

вид:
$$U_{s_1} = -(K-1)^2 \cdot a \begin{cases} \int_0^{\infty} e^{-\frac{\tau_1}{T}} \cdot [U_1(t-\tau_1)]^2 \cdot d\tau_1 - \frac{2}{T} \int_0^{\infty} e^{-\frac{\tau_1-\tau_1}{T}} U_1(t-\tau_1) \cdot U_1(t-\tau-\tau_1) d\tau \cdot d\tau_1 + \frac{1}{T^2} \int_0^{\infty} e^{-\frac{\tau_1-\tau_1+\tau_2}{T}} U_1(t-\tau-\tau_1) U_1(t-\tau-\tau_2) d\tau \cdot d\tau_1 \cdot d\tau_2 \end{cases}$$
 (8)

Это существенно отличается от решения Панчева.

После подстановки полученных выражений (6), (7) и (8) в (5), имея в виду, что εU_1 (t) = U' (t) и осредняя полученное выражение по времени, будем иметь:

$$\overline{U}_{s} - \overline{U} = \sqrt{\frac{1}{a}} - (K - 1)^{2} \cdot a \int_{0}^{\infty} e^{-\frac{\tau}{T}} \overline{[U'(t - \tau)]^{2}} +$$

$$+\frac{2(K-1)^{2}a}{T^{2}}\int_{0}^{\infty}\int e^{-\frac{\tau+\tau_{1}+\tau_{2}}{T}}\overline{U'(t-\tau_{1})}\overline{U'(t-\tau_{1}-\tau)}d\tau \cdot d\tau_{1}.$$

$$-\frac{(K-1)^{2}a}{T^{2}}\int\int_{0}^{\infty}\int e^{-\frac{\tau+\tau_{1}+\tau_{2}}{T}}\overline{U'(t-\tau_{1})}U'(t-\tau-\tau_{2})\cdot d\tau \cdot d\tau_{1}\cdot d\tau_{2}. (9)$$

Дальнейший апализ и преобразование полученного результата ведется при помощи статистических методов исследования непрерывных полей, нашедших за последние годы широкое применение в теоретических исследозаниях турбулентности благодаря работам А. Н. Колмогорова, А. М. Обухова, А. М. Яглома и др.

Следуя А. Н. Колмогорову введем временную структурную функцию:

$$D(\tau) = \overline{[U(t) - U(t - \tau)]^2},$$

где т — время, за которое определяется структурная функция.

Подинтегральное выражение четвертого члена правой части—равенства (9) может быть представлено через структурную функцию в виде:

$$\overline{U'\left(t-\tau-\tau_1\right)|U'|\left(t-\tau-\tau_2\right)}=\frac{1}{2}|D|\left(\tau_1-\tau_2\right)+\left[\overline{U'\left(t-\tau\right)}\right]^2;$$

третий член в правой части (9) в виде:

$$\overline{U'\left(t-\tau_{1}\right)\ U'\left(t-\tau_{1}-\tau\right)}=\frac{1}{2}\ D\left(\tau\right)+\ \overline{\left[U'\left(t-\tau\right)\right]^{2}}.$$

Подставляя это выражение в (9), получим:

$$\overline{U}_{s} - \overline{U} = \sqrt{\frac{l}{a}} - (K - 1)^{2} \int_{0}^{\infty} e^{-\frac{\tau_{1}}{T}} \cdot D(\tau) d\tau + \frac{(K - 1)^{2} a}{2 T} \int_{0}^{\infty} e^{-\frac{\tau_{1} + \tau_{2}}{T}} D(\tau_{1} - \tau_{2}) d\tau_{1} \cdot d\tau_{2} .$$
(10)

Пользуясь преобразованием, приведенным в работе [6] получим

$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-\frac{\tau_{1}+\tau_{2}}{T}} D\left(\tau_{1}-\tau_{2}\right) d\tau_{1} \cdot d\tau_{2} = T \int_{0}^{\infty} e^{-\frac{\tau^{*}}{T}} D\left(\tau^{*}\right) d\tau^{*};$$

$$\overline{U}_{s}-\overline{U} = \sqrt{\frac{I}{a}} - \frac{(K-1)^{2} a}{2} \int_{0}^{\infty} e^{-\frac{\tau}{T}} D\left(\tau\right) d\tau. \tag{11}$$

Выражение (11) при $\frac{1}{T} = 2 \sqrt{al}$ примет вид

$$\overline{U_s} - \overline{U} = \sqrt{\frac{1}{a}} \quad \left[1 - \frac{(K-1)^2 a}{l} \cdot \frac{1}{T} \int_0^{\pi} e^{-\frac{\pi}{T}} D(\tau) d\tau \right]. \quad (12)$$

Автором статьи сделана попытка определить аналитический вид функции D (τ) на основе экспериментальных данных.

Обрабатывались хронограммы продольных пульсационных скоростей, полученных при помощи установки "следящая щель" [7] для двух точек потока глубиной $H=6.0\ cm$.

Значения $\Delta U'(t) = U'(t) - U'(t - \tau)$ определялись графически для десяти различных значений τ на глубине $H_1 = 2.0$ см и восьми значений τ на глубине $H_2 = 4.4$ см. Величина τ при этом колебалась в пределах от 0.08 до 21.7 сек.

При построении структурной функции вместо значений $[\overline{\Delta}\,\overline{U'\,(t)}]^2$ пользовались значениями $[\overline{\Delta}\,\overline{U'\,(t)}],^2$ вычисление которых, во-первых, проще вычисления значений σ , и, во-вторых, отдельные большие значения $\Delta U'\,(t)$ сильно отличающиеся от остальных, заметно сглаживаются.

Известно, что значение структурной функции отличается от $\overline{|\Delta~U'~(t)|}^2$ постоянным множителем и при нормальном распределении вероятности она определяется теоретически и равна $\pi/2$.

С целью дополнительной проверки значений K, были построены экспериментальные и теоретические кривые распределения вероятностей $\Delta U'$ для различных значений τ , и определены необходимые условия существования нормального закона распределения $\Delta U'$. Результаты обработки этих кривых приведены в табл. 1, где β_1 и β_2 —

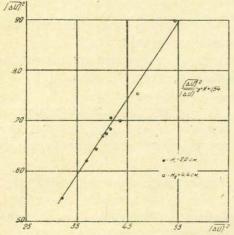
Таблица I

Высота точки	Nº Nº	t CEK		۵	\$ ₄	β_2	$\frac{X^2 - a_{\chi^2}}{\sigma_{\chi^2}} < 3$	D_{\max}	λ	P (v) >0,05*
H=2,0 c.u	1 2 3 4 5 6 7 8 9	0.08 0.28 0,7 1.4 2,0 3,18 4.44 5,86 11,45 21,74	6,07 6,23 6,32 6,47 6,45 6,39 6,61 6,53	7,38 7,9 8,01 8,17 8,24 8,39 8,21 8,36 7,96 8,18	0,096 0,101 0,131 -0,049 -0,266 -0,120 0,047 -0,024 -0,270 -0,270	-0,02 -0,45 -0,6 -0,22 -0,52 -0,38 -0,38 -0,34 -0,62 -0,52	$\begin{array}{c} -0.73 \\ 0.32 \\ -0.8 \\ -0.71 \\ 2.3 \\ 1.61 \\ 1.44 \\ -0.44 \\ 1.36 \\ 2.07 \end{array}$	15,5	0,694	0,71

коэффициенты асимметрии и эксцесса; χ^2 — критерии К. Пирсона; D — максимальная разница эмпирической и теоретической кривых распределения в критерии согласия А. Н. Колмогорова.

^{*} Значение P (λ) соответствует максимальному значению D для всех возможных величин τ .

На рис. 1 представлена экспериментальная кривая $\frac{|\Delta U'|t|^2}{|\Delta U'|t|^2}$ $=f_{2}(|\Delta U'(t)|)^{2}$ коэффициент наклона прямой K=1,54, что соответствует



значению ≈ $\frac{\pi}{2}$ = 1,57.

Экспериментальные данные хорошо апроксимируются степенной функцией вида:

$$D(\tau) = A \tau^{\beta} \tag{13}$$

К аналогичному выводу пришли в своих работах А. Н. Колмогоров и А. М. Обухов.

На рис. 2 представлены кривые $\frac{\overline{|\Delta U'|}}{\overline{U}} = f(\tau)$.

По выражению (13) на рис. 3 Рис. 1. Кривая $\overline{[\Delta U'(t)]^2} = f_2(\overline{[\Delta U'(t)]^2})$ в логарифмических координатах определены значения:

$$VA_1=0.0596$$
 $\beta_1=0.06$ для глубины $H_1=2.0$ см; $VA_2=0.06$ $\beta_2=0.10$ для глубины $H_2=4.4$ см.

После подстановки (13) в выражение (12) и преобразований получим:

$$\overline{U}_{s} - \overline{U} = \sqrt{\frac{I}{a}} \left[1 - \frac{(K-1)^{2} a \cdot A T^{3}}{4l} \int_{0}^{\infty} e^{-\frac{\tau}{T}} \left(\frac{\tau}{T}\right)^{\beta} \cdot d\left(\frac{\tau}{T}\right) \right]. \quad (14)$$

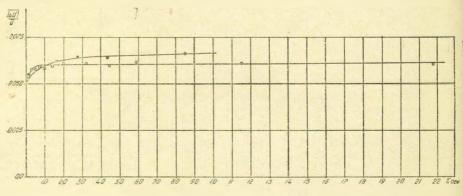


Рис. 2. Кривые зависимости $\frac{|\Delta U'|}{U} = f(z)$

где интеграл из себя представляет γ — функцию и равен Γ (1+3). По этому получим окончательно

$$\overline{U}_s - \overline{U} = \sqrt{\frac{1}{a}} \left[1 - \frac{(K-1)^2 \cdot a \cdot A \, 7^{\frac{\alpha}{2}}}{4l} \cdot \Gamma \, \left(\beta + 1 \right) \, \right]. \tag{15}$$

По кривой Г $(1+\beta)=f_1$ (β) на рис. 4 определены значения Г $(1+\beta)$ для полученных двух значений β и по формуле (15) произведен расчет для следующих параметров потока и напосов. Резуль-

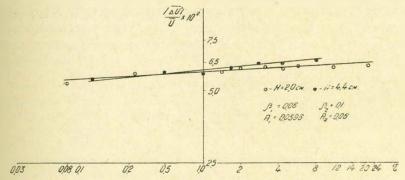


Рис. З. Логарифмическая кривая для определения значения 3 и А.

таты этого расчета сопоставлены с экспериментальными данными автора. (рис. 5). При расчетах приняты H=6.0~cM; уклон потока к горизонту i=0.005; объемный вес наносов $\gamma=1.4~m/M^3$; диаметр на-

носов $d_{cp} = 0,85$ -мм; гидравлическая крупность наносов $W_0 = 3,85$ см/сек. По формулам и кривым работы [8] произведен переход от скорости падения одиночной частицы к их групповой скорости падения. Однако большой разницы между ними

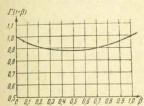


Рис. 4. Зависимость Γ $(1+\beta) = f_1(\beta)$

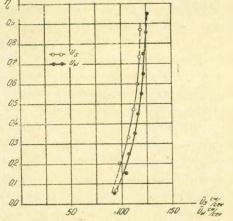


Рис. 5. Экспериментальные кривые $\overline{U}=f_3$ (қ) для твердых частиц и взвесенесущей жидкости.

при этом не наблюдается, так как средняя мутность потока весьма мала. Скорость стесненного падения частиц получилась равной 3,79 см/сек. Относительные скорости твердых частиц и жидкости, рассчитанные по формуле (15), получились равными: $\overline{U}_s - \overline{U} = -2.0$ см/сек при $H_1 = 2.0$ см; $\overline{U}_s - \overline{U} = -3.2$ см/сек, при $H_2 = 4.4$ см. Те же скорости, определенные по экспериментальной кривой, приведенной на рис. 5 составляют соответственно—5,0 см/сек и-4,0 см/сек.

Необходимо отметить, что качественная сторона полученных результатов по расчету и по эксперименту хорошо совпадает, т. е. в обоих случаях жидкость опережает твердые частицы. 5. ТН, $N \ge 2-3$

Расчеты по определению относительных скоростей проведены также для одной и той-же точки расположенной на глубине $H=2,0\,c$ м от дна, при трех средних мутностях потока.

Интересно отметить, что относительные скорости, определенные по формуле (15), с увеличением средней мутности уменьшаются. Этот результат в определенной мере согласуется с результатами экспериментальных исследований автора и J. Tesarik-a [9], проведенных в вертикальной трубе с восходящим потоком.

E. S. 2000.63Ub

ՏՈՒՐԲՈՒԼԵՆՏ ՀՈՍԱՆՔՈՒՄ ԿՈՇՏ ՄԱՍՆԻԿՆԵՐԻ ՀԱՐԱՔԵՐԱԿԱՆ ԱՐԱԳՈՒԹՅԱՆ ՀԱՐՑԻ ՄԱՍԻՆ

Udhnynnid

Տուրբուլենտ հոսանքներում ծանր մասնիկների շարժման հարցը հիդրոտրանսպորտի ուսուննասիրման ժամանակ էական հարցերից մեկն է, քանի որ ծանր մասնիկների և կրող ջրի փոխազգեցությունը հիմնականում պայմանավորված է նրանց միջև դոլություն ունեցող հարարերական արագությամը։

Տարրևը հեղինակներ տարրեր ձևով են լուսարանում այդ հարցը դրականության մեջ։ Չկարողանալով ճիշտ որոշել այդ արադությունը, նրանք կատարում են այս կամ այն ընդունելությունները։

Աշխատանքում հետադոտված է ծանր մասնիկի շարժումը տուրբուինտ հոսանքում, վերջինիս ցուցաբերած դիմադրուխյան քառակուսային օրենքի առկայուխյամբ։ Մասնիկի շարժման դիմերենցիալ հավասարումը կախված միայն ժամանակից լուծվում է փոքր պարամետրի մեխողով։ Ստացված են մասնիկի շարժման արադուխյան երևք մոտավորուխյունները, որոնք համապատականում են շ փոքր պարամետրի ղերո, առաջին և երկրորդ աստեճաններին։ Ապա և լրիվ լուծումը մինչև երկրորդ աստեճանի չ-ի համար, հետադայում կիրառելով ստրուկտուրային ֆունկցիաների դաղափարը պատահական անընդհատ դաշտերի ուսումնասիրման վիճակադրական տեսուխյունից այն բերվում է (12) համասարմանը, որը և հնարավորուխյուն է տալիս D(ւ) ֆունկցիայի առկայուխյան արադուխյուն արունին և կրող հեղուկի հարարևրական արադուխյունը։

Աշխատանքում փորձ է արված էքսպիրինինատը ճանապարհով որոշել D(=) ֆունկցիայի տեսքը և վերջինիս օգնությամր հաշվել հարարերական արադությունները ծանր մասնիկի և կրող հեղուկի համար։ Հասկանալի է, որ D(=) փորձնական որոշման ժամանակ հաշվի են առնված սահմանային պարմանները։ Այսպիսով (15) բանաձևը հնարավորություն է տալիս առաջին մոտավորությամբ որոշել ծանր մասնիկի և տարող հեղուկի շարժման հարարերական արադությունը։ (15) բանաձևով ստացված արդյունքները համեմատված են հեղինակի փորձերի հետ (40, 5)։

ЛИТЕРАТУРА

- 1. Tchen-Chon-mon. Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. Hague, 1947.
- 2. Хаскинд М. Д. К теории папосов. О движении тяжелой частицы в турбулентном потоке. Известия АН СССР (ОТН), № 11, 1956.
- 3. Панчев Ст. Движение тяжелых частиц в турбулентном потоке при линейном законе сопротивления. Доклады Болгарской АН, т. 12, № 3, 1959.
- Панчев Ст. Движение тяжелых частиц в конвекционном турбулентном потоке при квадратичном законе сопротивления. Доклады Болгарской АН т. 12, № 4, 1959.
- 5. Дементьев А, М. Опыт теории расчета гидротранспорта. Изв. ВНИИГ т. 36, 1948.
- Яглом А. М. Об учете инерции метеорологических приборов при измерениях в турбулентной атмосфере. Тр. Геофизического института, № 24, 1954.
- Джрбашян Э. Т. и Карапетян Р. М. Установка "Следящая щель" для измерения турбулентных характеристик потока. Вторая Закавказская конференция молодых научных работников, Тбилиси, 1962.
- Минц Д. М. и Шуберт С. А. Гидравлика зернистых материалов, МКХ РСФСР, М., 1955.
- Tesarik J. The fluidization of granulated particles and flocs in water, La Houtlie Blanche № 6, 1959.