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Fermionic condensate is investigated in (D + 1)-dimensional de Sitter spacetime by using the
cutoff function regularization. In order to fix the renormalization ambiguity for massive fields an
additional condition is imposed, requiring the condensate to vanish in the infinite mass limit. For
large values of the field mass the condensate decays exponentially in odd dimensional spacetimes
and follows a power law decay in even dimensional spacetimes. For a massless field the fermionic
condensate vanishes for odd values of the spatial dimension D and is nonzero for even D. Depending
on the spatial dimension the fermionic condensate can be either positive or negative. The change
in the sign of the condensate may lead to instabilities in interacting field theories.
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1. Introduction. De Sitter (dS) spacetime is among the frequently used
background geometries for the investigation of the influence of gravitational field
on quantum matter. In the early stages of studies this interest was motivated by
high symmetry of the corresponding geometry. The dS spacetime is the maximally
symmetric solution of Einstein's equation with a positive cosmological constant as
the only source of gravitational field and because of that a relatively large number
of physical problems can be exactly solved on that background. This helps to shed
light on the effects of gravity on quantum fields in more complicated geometries.
The further increase of the interest to the investigations of quantum effects on
dS bulk was related to the appearance of the inflationary scenario for the expansion
of the early Universe (for reviews see [1,2]). In most inflationary models the
expansion is described by an approximately dS geometry sourced by the potential
energy of a scalar field (inflaton). A short period of the corresponding quasi-
exponential expansion provides a natural solution to a number of fine tuning
problems of the standard Big Bang model (horizon and flatness problems, the
problem of topological defects, etc.). In addition, the inflationary scenario leads
to an interesting mechanism for the generation of small inhomogeneities in the
energy distribution at the beginning of the radiation dominated cosmological
expansion that seed the large scale structure of the Universe at late stages. This
mechanism is based on the classicalization of quantum fluctuations of scalar fields
by an inflationary expansion. Its predictions are in good agreement with the
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observational data about the temperature anisotropies of the cosmic microwave
background. Those data, in combination with observations of high redshift super-
novae and galaxy clusters indicate that the expansion of the Universe at the present
epoch is well approximated by a model where the dominant part of the energy
content is described by the equation of state close to the one for a positive
cosmological constant. The cosmological expansion with this type of gravitational
source will lead to an asymptotically dS universe as the future attractor. This shows
that the investigation of physical effects in dS spacetime is also important for the
future of the Universe.

The expectation values of bilinear combinations of quantum fields with
different spins (field squared, energy-momentum tensor) for the Bunch-Davies
vacuum in dS spacetime have been investigated in a large number of papers (see
[3-6] and references therein). In particular, the Green function and the effective
Lagrangian for a spinor field have been discussed in [7]. The expression for the
renormalized vacuum expectation value (VEV) of the energy-momentum tensor for
a spinor field in 4-dimensional dS spacetime is derived in [8] by using the
n-wave regularization method. The same result is obtained in [9] by using the
regularization based on a cutoff function. In [9] the fermionic condensate is
investigated as well. The fermionic condensate and the VEV of the energy-
momentum tensor for a spinor field in (D+ 1)-dimensional dS spacetime for even
values of D have been investigated in [10] by using the point-splitting regular-
ization technique. The shifts in the VEVs for spinor fields induced by the toroidal
compactification of a part of spatial dimensions in dS spacetime were studied in
[10-12]. Another class of topological effects caused by the presence of a cosmic
string in dS bulk have been discussed in [9].

In the present paper we investigate the renormalized fermionic condensate in
(D+ 1)-dimensional dS spacetime for general value of the spatial dimension D.
The regularization procedure will be based on the introduction of a cutoff function
in the corresponding integral representation. In addition to the VEV of the energy-
momentum tensor, the fermionic condensate is an important local characteristic
of the fermionic vacuum. Though the corresponding operator is local, because of
the global nature of the notion of vacuum, it contains information about global
properties of the background geometry. The fermionic condensate is an important
characteristic in quantum chromodynamics, in the physics of superconductivity and
phase transitions, in models of dynamical mass generation and symmetry breaking.
It has been investigated in various types of physical models, including the ones
for curved backgrounds (see, for example, [13-20]).

The paper is organized as follows. In the next section, we describe the
background geometry and present the complete set of fermionic normal modes.
The expression for the fermionic condensate, regularized with the help of cutoff
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function, is provided. The extraction of divergences and the renormalization of
the corresponding VEV differ for dS spacetimes with even and odd numbers of
spatial dimensions and we describe the respective procedures in sections 3 and 4,
respectively. Closed analytic expressions are derived for the renormalized fermionic
condensate in both these cases. In section 5 we consider a model with interacting
scalar and fermionic fields where the fermion condensate determines the effective
mass of the scalar field. The main results are summarized in section 6.

2. Regularized fermionic condensate in dS spacetime. We consider
a quantum fermionic field y on background of (D + 1)-dimensional de Sitter
spacetime described by the line element

ds? = di?— o2 i(dzi)z ’ (1)

i=1

in planar coordinates (t,zl,...,zD ). The parameter o determines the Hubble
constant and is related to the corresponding positive cosmological constant A by
the formula o = D(D-1)/2A . In addition to comoving time coordinate #, we will
use the conformal time t defined by the relation t=-ae™/*, —w<1<0. In
terms of this coordinate, the line element (1) takes a conformally flat form with
the conformal factor (a/ 1)2. The dynamics of the field in a curved spacetime is
governed by the Dirac equation

iy“(6u+Fu)\v—m\V:0, 2

where y* =e(*; )y(“) are the curved spacetime Dirac matrices and T, is the spin
connection. The vielbein fields obey the relation e(‘;)e(vb)n”b =g", with n* being
the Minkowski spacetime metric tensor and g, =diag(l,—e2’/“,...,—e2’/°‘ . The
flat-space Dirac matrices y® are Nx N matrices with N =2{P*)2] where the
square brackets mean the integer part of the enclosed expression. In the discussion

below these matrices will be taken in the Dirac representation:

( _ 1 0 (a)_ 0 o,
P o) e 3

with a=1, 2, ..., D and (N/2)x(N/2) matrices o,. By using the anticommutation
relations for y(“) one gets 6,6, +0,0, =28, . For the geometry under conside-
ration we can take the vielbein fields in the form e}(LO) = 6ﬁ, el(f) =e'l Sy,
a=1, 2, ..., D. The components of the spin connection are expressed as I\, =0,
T =" 20 )y 40, 1=1, 2, .., D.

The fermionic condensate in the vacuum state |O> is defined as the VEV
<0|W\|/|0>=<W\y>, where the Dirac adjoint is expressed as W:\VTV(O). In the
discussion below we will assume that the state |0> corresponds to the maximally
symmetric Bunch-Davies vacuum. Note that the maximal symmetry does not
uniquely define the vacuum state. As it has been discussed in [21], in dS spacetime
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there is a one-complex-parameter family of maximally symmetric states. Among
those states the Bunch-Davies vacuum is singled out as the only state having the
Hadamard structure of singularities.

Given_the complete set of solutions to the equation (2), denoted here as
{w[(;),w[({) , the fermion condensate is written as the mode-sum

— 1 —(-), (=) =(+), (+
()= T v, @

Here, \y[(;) and wf{) are the analogs of the positive and negative energy mode
functions in the Minkowski bulk and the collective index [ presents the set of
quantum numbers. In (4), the symbol Zﬁ is understood as a summation over
the discrete quantum numbers and an integration over the continuous ones. In
the problem under consideration the mode functions are specified by the momen-
tum k = (kl, s kD) and by the quantum number o taking the values ¢ =1,..., N/2
(hence, B:(k,c)). They are given by the expressions

H1(/12)—iocm (k T])W(;)
E11)/27[0Lm (kT])WG ) ’
(2) -)
\V[(}_) — C(k)n(DH)/Z eikr -1/2+iom (kn)wc , (5)
H1(/22)+[ocm (k n)WSs_)

where n=-1, k= k|, n=k/k, kr= Zilkizi , HSI’Z)(z) are the Hankel functions,

- i(nc

vy = Clie ) e""’[ -
~i(ne)H

and o = (61,(52, ) In (5), the one-column matrices w((f) have N/2 rows and
the elements w! z) O/ s c(;l) =id,,. The normalization coefficient C(k) is ex-
pressed as
C(k)_ ﬁenam/Z
- 5DJ2+1 n(D—l)/Z al?’ (6)

Similar mode functions in locally dS spacetime with a toroidally compactified
subspace are presented in [10]. The mode functions for Dirac fermions in
4-dimensional dS spacetime have also been considered in [22]. For a massless
field, by takmg into account that Hl(/g( ) —i\2/mxe™, we get the conformal
relation \y (n/ oc)D/ ? 84))[3 with the corresponding modes in Minkowski spacetime.
Substituting the normal modes (5) in (4), for the fermionic condensate we find
D+1 _mam
<\|/‘V> 2D¥2_DJ2- IF(D];; DI dkk”

x [Hgll)/Zfi(xm (k n) E1/)2+i0tm (k n)_ 1(/2) —iom (k n) 1(/2)+10Lm (kT])]
The expression on the right-hand side is divergent and some renormalization
procedure is necessary. Introducing the Macdonald function instead of the Hankel

n

™)
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function, the formula (7) is rewritten as

— \_2Pa PPN 1-2ima
()= N 0,4 12me

PR (D 2) n
s . . (®)
X .[dkk KI/Z—imoc(lkn)Kl/Zfimot(_ an)
0
In deriving this representation we have used the relation
2
KO -K K00, + 2 KO8, o)

with y=ix and v=1/2—ima . This relation directly follows from the recurrence
relations for the Macdonald function.

In order to obtain an alternative integral representation of the fermionic
condensate, for the product of the Macdonald functions (8) we use the formula [23]

K, (ik n)Kv (— ik n) = .[dy cosh(2v y)jﬂexp[— Z(k nsinh y)2 u— L:l . (10)
0 o U 2u

Substituting this into (8), we first integrate over k. Then, instead of u we introduce
a new integration variable x:1/ (u nzsinh2 y). After changing the order of the
integrations, the integral over y is expressed in terms of the Macdonald function
and we find

_ i PPN 1-2ima. |7 e
<‘V\V>:_ 2(2R)D/2+1 (an + 1 j,o[dxxD/z Ca Kl/Z—ima(xnz)' (11)
Using the relation
(n@n + 2\))6’”‘2KV (xn2 )z 2xn? e [KV (xn2 )— K, (xn2 )], (12)
the condensate can also be presented in the form
_ 20PN % .
<\|f\|f> = —(Zn)D/ZH z[dxxD/ze” ImKl/Z—ima (x) (13)

The integral in the right-hand side diverges in the upper limit.

For the further evaluation an explicit regularization scheme should be used.
As such a scheme we will introduce an exponential cutoff function e™**, s >0,
in the integrand of (13) with the regularized expression

— () 20PN T o
<\|I\|I>( ) = (2(:;)D/2+1 J-dxxD/ze(l ) ImKl/Z—ima(x)' (14)
0

The limit s — 0 should be taken at the and of calculations.

In (14), the integral over x is explicitly evaluated in terms of the associated
Legendre function (see [24]) and we find
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_ () o PN . VP ()
<\|/\|/> =Wlm F(u+zmoc)l"(p+1—zmoc)m ) (15)
with y=1-s and
_D+1 16
== (16)
For the product of the gamma functions in this formula one has
[D/2]
Fluima) 1 ~ima)= By e —ima) [ | 1+ m? 2] (17
where [D/2] stands for the integer part of D/2, and the function
B ()= nx/sinh(nx), forodd D,
P | mfcosh(nx),  foreven D, (18)

is introduced. Now we want to expand the regularized fermionic condensate in
powers of s. The further discussion should be developed for even and odd values
D separately.

3. Condensate in even dimensional spacetimes. First we consider
odd values of the spatial dimension D. In this case W is an integer and the
corresponding Legendre function in (15) is expressed in terms of the hypergeo-
metric function as follows:

- - 2
Pj;a(—y):%(l—yzw 8;‘ F(ima,l—imot;l;HTy]. (19)
Substituting this into the expression for the regularized fermionic condensate, we
get

— \(s) nNa ? . .

yy)  =——————Rel0} Flima,l-imo;1;1-5/2) |.

< > (2n)sinh(nma) [ ( / )] (20)
The expansion of the right-hand side of this expression is given by the formula
[25]

Flima,1-imo;1;1-5/2)= %sinh(nm Ot)i a,[b,—n(s/2)|(s/2)" , (21)

n=0
for the hypergeometric function. In this formula,
. 1—i
a, = (im O‘)ﬂ(( 7 ima), , b, =2%(n+1)-P(n+imo)— F(n+1-imar), 22)
n!
where (c), is Pochhammer's symbol, ¥(x)=T"(x)/T'(x) is the digamma function
(here we use the notation W(x) for the digamma function instead of the standard
one y(x) in order to avoid the confusion with the fermion field y ). With the
use of (21), we have the following expansion
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)

<W‘V>(S) = ﬂ Z“:CIH (-1 (- m; Im(a”_ (I-n+ 1)”,1 - u!Im(arPl )ln(s/z)

(47:)H =1 (s/ 2)"n
+ gc,“ (~1Y ¢-1)1mla, )1+ 1), +ntim(a,b, )+ } :

where C}' are the binomial coefficients and the dots stand for the terms which
vanish in the limit s —> 0. As it is seen from (23), we have the power-law
divergent terms, logarithmically divergent term, and the finite part. Note that the
coefficients (22) can also be written in the form

= /2 2 2 -1
n+ima, g[ e ]’ % ’
1 (24)

n—imo.
On the basis of the expansion (23), taking into account the finite renormalization
terms, the renormalized fermionic condensate is written in the form

(P e (5

(23)

. -2
a - im oc(n!)

b, =2¥(n+1)-2Re[¥(n+ im )] -

e (4n) T (TP (mo)”
| - g (25)
+ 2{Re[‘1’(zm OL) - ln(m a)} 3 [l + T J} )

where we have used the relation Re[W(l1+ima)|]=Re[¥(ima) which directly
follows from the formula ‘P(l + z): ‘}’(z)+ 1/z for the digamma function (see [25]).
In (25), the coefficients f, should be fixed by an additional renormalization
condition (for a discussion of ambiguities in the renormalization of the expectation
value of the energy-momentum tensor in the Hadamard renormalization procedure
for general number of spatial dimensions see [26]). As such a condition we require
that (eren — 0 in the limit m —>o. By using the expansion

0 n—1

Re[¥(ima)]=In(m o)+ Z(_I)—Bz”, (26)
n=1 21’!(7}1 0,)2’1

with B, being the Bernoulli coefficients, and requiring the cancellation of the
terms in (25) with positive powers of the mass, we find

$ 1) B, ( 12] &
e l+—|=-> 24, 27

; nx" g x ;xl (27)
This relation defines the values of the coefficients f, in the expression (25) for
the renormalized fermionic condensate. In particular, one has f, =-1/6 for

D=3, f=-1/6, f,=-17/20 for D=5, and f =-1/6, f,= -47/20, f,=-5297/630
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for D=7. In the cases D=3 and D=5 from (25) one finds

- ; 2 2 1
<\|/\|/>ren = W{(ln(m oc) - Re[‘l’(zm oc)])(m o+ 1)+ E} , o8
(V). = %{% + % + (In(mo)— Re[¥(ima)])(m> a® +1)m? o> + 4)} ,

For D=3 the result (28) coincides with the corresponding expression obtained
previously in [9]. For a massless field the renormalized fermionic condensate
vanishes. For large masses, ma >>1, the condensate behaves as o /(m a). In
Fig.1 we have plotted the fermionic condensate as a function of ma for D=3
and D=5. In these cases the fermionic condensate is negative for massive fields.

e e I S B S e e e S R S e s S S

0.0 1 ]

ren
]
N
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10%0° <y y>
S
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08 F
10 Ff
-1.2 : =
0 1 2 3 4
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Fig.1. Fermionic condensate versus ma for the spatial dimensions D=3 and D=>5.

4. Fermionic condensate in odd dimensional spacetime. In the
renormalization procedure we need the expansion of the expression on the right-
hand side of (15) near the point y=1. For even values of D, this expansion for
the associated Legendre function directly follows from the formula

Pl (~7) (2—s)“sinh(zmea)

—ima

== - F(ima,l—ima;l+y;s/2)
(1 e )#/2 iD(1+ w)sin(ur) (29)

]F(l—ima—#)F(u)
(1 —ima + p1)s*
The standard definition of the hypergeometric function in terms of the series over
s provides the required expansion. For the case under consideration p is a half-

+lsin[7r(ima+,u) Flima,1-ima;1— 15;5/2).
T
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integer and, hence, the second term on the right-hand side of (29) does not
contribute to the finite part, whereas the first term is finite in the limit s — 0.
Substituting expression (29) into formula (15) and using the expansion for the
hypergeometric function in the second term on the right-hand side, we find the
following expansion for the regularized fermionic condensate

—

n(s/2)"_“ nl

F o)

M

Gm&“zNTm—Dyﬂ{mmm

(4n)" o” ma ST(1—p+n)n! i
D/2-1 (30)
—tanh(nma) [] [(l+ 1/2) +m? a2]+ },
1=0

where, as before, the dots stand for the terms which vanish in the limit s - 0.
From formula (30) we find the following expression for the renormalized
fermionic condensate:

oL j{z _— ()H“ /)]} o

where the coefficients ¢, are determined from the renormalization condition
(yy),. —0 for m—oo. From this condition it follows that

b2 bRl 1-1/2Y

L —_ 1+[ j . 32
gw@y H[ — (32)
This leads to the following formula for the fermionic condensate

<W\V> _ (_ 1)1)/2 (4n)(1—D)/2 Nao 2 D/2

m? o? +(1-1/2) |
2r((D+1)/2)(e?™ +1) g[ (=125 (33)
This expression coincides with the result obtained in [10] by using the point-
splitting procedure and the adiabatic subtraction. Hence, we have shown that the
different renormalization schemes give the same result for the renormalized
fermionic condensate. The sign of the fermionic condensate (33) coincides with
the sign of (- I)D /> For large values of the mass, ma >>1, the fermionic
condensate (33) is suppressed by the factor m? o e7?™*  Unlike to the case of
odd D, in even number of spatial dimensions the fermionic condensate for a
massless field differs from zero (see also [10]):
() - (-1)"2 NT((D+1))2)
W = gD G4

In Fig.2 the dependence of the fermionic condensate on ma is presented for
several values of the spatial dimension.
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Fig.2. Fermionic condensate as a function of mo for D=2, 4, 6.

5. Interacting scalar and fermion fields. Nonzero fermionic condensate
can be of considerable importance in interacting field theories. As an example,
here we consider a system of interacting fermionic and scalar fields described by
the Lagrangian density

1w | i _ _ _
L=-g" %cpavcp—EMchz+5[W”Vuw—(Vu\v)v”\v]—mww—mzww, (35)

with the coupling constant A having the dimension (length)”?. The corresponding
field equations read

O+ M2 299)o=0, (iv"v, —m—2r9*Jy =0, (36)

where [ stands for d'Alembert operator for scalar fields.

Assume that the field ¥ is quantized and the field ¢ is a classical field. If
(Ww)ren is the renormalized fermion condensate, then the classical dynamics of
the scalar field is described by the equation

@+ M2+ 20(ww) _Jo=0. (37)

As it is seen, the effect of the interaction of the scalar field with the fluctuations
of the fermionic field is equivalent to the change of the mass term. For a general
background the effective mass depends on the spacetime point. In the case of dS
bulk the fermion condensate is constant and the interaction leads to a constant
shift in the squared mass term for the scalar field. In general, this shift can be
negative and under the condition M 2y 2K<W\y> <0 the effective mass becomes

ren



FERMIONIC CONDENSATE IN de SITTER SPACETIME 585

tachyonic. The tachyonic mass may lead to an instability of the corresponding
field theory (for instabilities in interacting scalar field theories induced by
background geometry, nontrivial topology and boundaries see [27]). Note that, in
a similar way, the quantum fluctuations of the scalar field lead to the correction
of the fermionic mass term in the form 7»<(p2 > . In a more general case of a
scalar field with the potential ¥(¢), the interaction with the vacuum fluctuations
of a fermionic field leads to the correction with the effective potential
Vet ((p)z V((p)+ k{W\y)ren ¢”. In particular, this type of correction to the inflaton
potential can have important consequences in the inflationary scenario.

Similar to the case of the system of interacting fermion and scalar fields, the
nonzero fermionic condensate leads to the shift of the fermion effective mass in
the Nambu-Jona-Lasinio type models. These models contain four fermion inter-
action term g(W\V)2 in the Lagrangian density, with g being the four fermion
coupling constant. They were applied to describe the dynamical symmetry breaking
in electroweak theory and quantum chromodynamics (for symmetry breaking in
the Nambu-Jona-Lasinio model in curved spacetime see, for example, [28,29]).
The corresponding effective mass for a fermion field becomes m—2 g(W\u)ren.
Again, we see that, depending on the fermionic condensate, the effective mass may
become negative.

6. Conclusion. In the present paper we have investigated the fermionic
condensate for a massive spinor field in dS spacetime in an arbitrary number of
spatial dimensions. In Section 2, an expression for the corresponding regularized
quantity is derived assuming that the field is prepared in the Bunch-Davies vacuum
state. The renormalization procedure for even and odd dimensional spacetimes is
considered separately. In even dimensional dS spacetime the renormalized fermionic
condensate is given by expression (25), where the coefficients are obtained from
the condition of vanishing the condensate in the limit m — o . These coefficients
are defined by the relation (27). For large values of the field mass, the condensate
decays as 1/(ma) and it vanishes for a massless field field. In odd dimensional
dS spacetime, for the renormalized fermionic condensate we derived the formula
(31), with the coefficients ¢, defined from the relation (32). In this case, for large
values of the mass the fermionic condensate decays exponentially. Unlike the case
of even dimensions, for a massless field the condensate does not vanish.

Another vacuum state in dS spacetime is the hyperbolic vacuum [30-33]. It
is naturally realized by the normal modes of quantum fields in the coordinate
system foliating the spacetime by spatial sections with constant negative curvature.
Unlike to the Bunch-Davies vacuum, the hyperbolic vacuum is not maximally
symmetric and the corresponding fermionic condensate will depend on time. This
feature has been demonstrated for the expectation values of the field squared and
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energy-momentum tensor in the case of a scalar field (see [30,33]). For a massless
fermionic field we expect that the difference in the fermionic condensates for the
Bunch-Davies and hyperbolic vacua will decay at late stages of the expansion like
1/ t? . This is in agreement with the general result in accordance of which the
Bunch-Davies vacuum is a future attractor for relatively large class of states in dS
spacetime. Note that the renormalization of the fermionic condensate for the
hyperbolic vacuum is reduced to the renormalization for the Bunch-Davies vacuum
and the difference in the corresponding VEVs is finite.

In interacting field-theoretical models (self-interacting fermionic field, fermionic
fields interacting with scalar or vector fields) the formation of nonzero fermionic
condensate may lead to phase transitions. We have considered two examples. The
first one presents a system of scalar and fermionic fields with the interaction
Lagrangian density proportional to (pzﬁ\y and the second one corresponds to the
Nambu-Jona-Lasinio type model with the self interaction (W\v)z. Depending on
the value and sign of the condensate, the effective mass squared may become
negative. Scalar-fermionic models with the interaction const-yy g"" 0,¢0,¢ have
also been considered in the literature. In this type of models the nonzero
condensate may lead to the change of the sign of the kinetic term for the scalar
field (ghost field).
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®EPMUOHHBIN KOHAEHCAT B IMPOCTPAHCTBE-
BPEMEHU ne CUTTEPA

A.A.CAAPAH!, E.P.GE3EPPA ne MEJIJIO?, A.C.KOTAHKAH!,
T.A.ITIETPOCAH!

Hccnenosan depmuoHHbIi KoHAeHcaT B (D+1)-MepHOM MpOCTpaHCTBE-BpeMEHU
ne Curtrepa ¢ MOMOIIbIO peryisipu3alu odpesatoieid GyHkuyei. s ycrpaHeHust
HEOJIHO3HAYHOCTH MEePEHOPMUPOBKY B CIydyae MacCUBHBIX MOJIEH, HAKJIaabIBaeTCs
JIOTIOJIHUTEJIbHOE YCJIOBUE, TpeOylollee 3aHyIeHUe KOHAeH caTa B Ipeaesie 0ecko-
HeyHOI Macchl. JIst OoblIMX 3HaUeHWI MacChl MOJISI KOHIEHCAT AKCIMOHEHLIMATbHO
3aTyxaeT B MPOCTPAHCTBE-BPEMEHU HEUETHOI Pa3MEPHOCTU U CTPEMUTCS K HYJIIO
0 CTENEHHOMY 3aKOHY B YETHO-MEPHOM IPOCTpaHCTBe-BpeMeHu. Jlist 6e3mMaccoBoro
noJjig (pepMUOHHBIN KOHIAEHCAT OOpalllaeTcsd B HyJb IPU HEUETHBIX 3HAYEHUSIX
MPOCTPAHCTBEHHON padMepHOocTM D W omimyeH oT Hyast mpu yetHoM D. B
3aBUCUMOCTH OT MPOCTPAHCTBEHHON pa3sMepHOCTH (PEPMUOHHBIN KOHAEHCAT MOXKET
OBITh KaK MOJIOXKUTEbHBIM, TaK W OTpULIATEIbHBIM. MI3MeHeHre 3HaKa KOHIeHcaTa
MOXET MPUBECTH K HEYCTOMYMBOCTSIM BO B3aMMOIEUCTBYIOLIUX TEOPUSIX MOJIs.

KoiroueBblie ciioBa: ghepmuonnubiii kondencam: npocmpancmeo-epems de Cummepa:
eaxyym banua-Jlesuca
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