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Fermionic condensate is investigated in (D + 1)-dimensional de Sitter spacetime by using the
cutoff function regularization. In order to fix the renormalization ambiguity for massive fields an
additional condition is imposed, requiring the condensate to vanish in the infinite mass limit. For
large values of the field mass the condensate decays exponentially in odd dimensional spacetimes
and follows a power law decay in even dimensional spacetimes. For a massless field the fermionic
condensate vanishes for odd values of the spatial dimension D and is nonzero for even D. Depending
on the spatial dimension the fermionic condensate can be either positive or negative. The change
in the sign of the condensate may lead to instabilities in interacting field theories.
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1. Introduction. De Sitter (dS) spacetime is among the frequently used

background geometries for the investigation of the influence of gravitational field

on quantum matter. In the early stages of studies this interest was motivated by

high symmetry of the corresponding geometry. The dS spacetime is the maximally

symmetric solution of Einstein's equation with a positive cosmological constant as

the only source of gravitational field and because of that a relatively large number

of physical problems can be exactly solved on that background. This helps to shed

light on the effects of gravity on quantum fields in more complicated geometries.

The further increase of the interest to the investigations of quantum effects on

dS bulk was related to the appearance of the inflationary scenario for the expansion

of the early Universe (for reviews see [1,2]). In most inflationary models the

expansion is described by an approximately dS geometry sourced by the potential

energy of a scalar field (inflaton). A short period of the corresponding quasi-

exponential expansion provides a natural solution to a number of fine tuning

problems of the standard Big Bang model (horizon and flatness problems, the

problem of topological defects, etc.). In addition, the inflationary scenario leads

to an interesting mechanism for the generation of small inhomogeneities in the

energy distribution at the beginning of the radiation dominated cosmological

expansion that seed the large scale structure of the Universe at late stages. This

mechanism is based on the classicalization of quantum fluctuations of scalar fields

by an inflationary expansion. Its predictions are in good agreement with the
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observational data about the temperature anisotropies of the cosmic microwave

background. Those data, in combination with observations of high redshift super-

novae and galaxy clusters indicate that the expansion of the Universe at the present

epoch is well approximated by a model where the dominant part of the energy

content is described by the equation of state close to the one for a positive

cosmological constant. The cosmological expansion with this type of gravitational

source will lead to an asymptotically dS universe as the future attractor. This shows

that the investigation of physical effects in dS spacetime is also important for the

future of the Universe.

The expectation values of bilinear combinations of quantum fields with

different spins (field squared, energy-momentum tensor) for the Bunch-Davies

vacuum in dS spacetime have been investigated in a large number of papers (see

[3-6] and references therein). In particular, the Green function and the effective

Lagrangian for a spinor field have been discussed in [7]. The expression for the

renormalized vacuum expectation value (VEV) of the energy-momentum tensor for

a spinor field in 4-dimensional dS spacetime is derived in [8] by using the

n-wave regularization method. The same result is obtained in [9] by using the

regularization based on a cutoff function. In [9] the fermionic condensate is

investigated as well. The fermionic condensate and the VEV of the energy-

momentum tensor for a spinor field in (D + 1)-dimensional dS spacetime for even

values of D have been investigated in [10] by using the point-splitting regular-

ization technique. The shifts in the VEVs for spinor fields induced by the toroidal

compactification of a part of spatial dimensions in dS spacetime were studied in

[10-12]. Another class of topological effects caused by the presence of a cosmic

string in dS bulk have been discussed in [9].

In the present paper we investigate the renormalized fermionic condensate in

(D + 1)-dimensional dS spacetime for general value of the spatial dimension D.

The regularization procedure will be based on the introduction of a cutoff function

in the corresponding integral representation. In addition to the VEV of the energy-

momentum tensor, the fermionic condensate is an important local characteristic

of the fermionic vacuum. Though the corresponding operator is local, because of

the global nature of the notion of vacuum, it contains information about global

properties of the background geometry. The fermionic condensate is an important

characteristic in quantum chromodynamics, in the physics of superconductivity and

phase transitions, in models of dynamical mass generation and symmetry breaking.

It has been investigated in various types of physical models, including the ones

for curved backgrounds (see, for example, [13-20]).

The paper is organized as follows. In the next section, we describe the

background geometry and present the complete set of fermionic normal modes.

The expression for the fermionic condensate, regularized with the help of cutoff
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function, is provided. The extraction of divergences and the renormalization of

the corresponding VEV differ for dS spacetimes with even and odd numbers of

spatial dimensions and we describe the respective procedures in sections 3 and 4,

respectively. Closed analytic expressions are derived for the renormalized fermionic

condensate in both these cases. In section 5 we consider a model with interacting

scalar and fermionic fields where the fermion condensate determines the effective

mass of the scalar field. The main results are summarized in section 6.

2. Regularized fermionic condensate in dS spacetime. We consider

a quantum fermionic field   on background of (D + 1)-dimensional de Sitter

spacetime described by the line element

  , 
1

2222 



D

i

it dzedtds (1)

in planar coordinates ( Dzzt  ..., , , 1 ). The parameter   determines the Hubble

constant and is related to the corresponding positive cosmological constant   by

the formula    212 DD . In addition to comoving time coordinate t, we will

use the conformal time   defined by the relation  te , 0 . In

terms of this coordinate, the line element (1) takes a conformally flat form with

the conformal factor  2 . The dynamics of the field in a curved spacetime is

governed by the Dirac equation

  , 0 
 mi (2)

where  
 a

ae    are the curved spacetime Dirac matrices and   is the spin

connection. The vielbein fields obey the relation    
  gee ab

ba , with ab  being

the Minkowski spacetime metric tensor and  
  tt eeg 22  ..., , 1,diag . The

flat-space Dirac matrices  a  are NN  matrices with   212  DN , where the

square brackets mean the integer part of the enclosed expression. In the discussion

below these matrices will be taken in the Dirac representation:
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(3)

with a = 1, 2, ..., D and    22 NN   matrices a . By using the anticommutation

relations for  a  one gets ababba   2 . For the geometry under conside-

ration we can take the vielbein fields in the form 
  00

 e , 
  aata ee   ,

a = 1, 2, ..., D. The components of the spin connection are expressed as 00  ,

     lat
l e  02 , l = 1, 2, ..., D.

The fermionic condensate in the vacuum state 0  is defined as the VEV

 00 , where the Dirac adjoint is expressed as  0† . In the

discussion below we will assume that the state 0  corresponds to the maximally

symmetric Bunch-Davies vacuum. Note that the maximal symmetry does not

uniquely define the vacuum state. As it has been discussed in [21], in dS spacetime



578 A.A.SAHARIAN  ET  AL.

there is a one-complex-parameter family of maximally symmetric states. Among

those states the Bunch-Davies vacuum is singled out as the only state having the

Hadamard structure of singularities.

Given the complete set of solutions to the equation (2), denoted here as
    



   , , the fermion condensate is written as the mode-sum

        . 
2

1













  (4)

Here, 
 
  and 

 
  are the analogs of the positive and negative energy mode

functions in the Minkowski bulk and the collective index   presents the set of

quantum numbers. In (4), the symbol  is understood as a summation over

the discrete quantum numbers and an integration over the continuous ones. In

the problem under consideration the mode functions are specified by the momen-

tum  Dkk  ..., ,1k  and by the quantum number   taking the values 2 ..., ,1 N

(hence,    ,k ). They are given by the expressions
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where  , k = |k|, n = k/k,  


D

i

ii zk
1

kr ,   zH ,21
  are the Hankel functions,

and  D  ..., , , 21 . In (5), the one-column matrices  
w  have N/2 rows and

the elements  
llw 


  ,  

ll iw 

  . The normalization coefficient C(k) is ex-

pressed as
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2 22112

2
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mek
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(6)

Similar mode functions in locally dS spacetime with a toroidally compactified

subspace are presented in [10]. The mode functions for Dirac fermions in

4-dimensional dS spacetime have also been considered in [22]. For a massless

field, by taking into account that 
    ixexixH  21

21 , we get the conformal

relation 
     

 



  M

D 2
 with the corresponding modes in Minkowski spacetime.

Substituting the normal modes (5) in (4), for the fermionic condensate we find
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(7)

The expression on the right-hand side is divergent and some renormalization

procedure is necessary. Introducing the Macdonald function instead of the Hankel
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function, the formula (7) is rewritten as
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In deriving this representation we have used the relation
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11 yKyK

y
yKyKyKyK y 
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with y = ix and  im21 . This relation directly follows from the recurrence

relations for the Macdonald function.

In order to obtain an alternative integral representation of the fermionic

condensate, for the product of the Macdonald functions (8) we use the formula [23]
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Substituting this into (8), we first integrate over k. Then, instead of u we introduce

a new integration variable  yux 22sinh1  . After changing the order of the

integrations, the integral over y is expressed in terms of the Macdonald function

and we find
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Using the relation

        , 22 2
1
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the condensate can also be presented in the form
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The integral in the right-hand side diverges in the upper limit.

For the further evaluation an explicit regularization scheme should be used.

As such a scheme we will introduce an exponential cutoff function sxe , s > 0,

in the integrand of (13) with the regularized expression

 

 
   . Im

2

2

0

21
12

12 












 xKedxx

N
im

xsD

D

D
s

(14)

The limit 0s  should be taken at the and of calculations.

In (14), the integral over x is explicitly evaluated in terms of the associated

Legendre function (see [24]) and we find
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with s-1  and
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D

(16)

For the product of the gamma functions in this formula one has
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where [D/2] stands for the integer part of D/2, and the function
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,  oddfor , sinh
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is introduced. Now we want to expand the regularized fermionic condensate in

powers of s. The further discussion should be developed for even and odd values

D separately.

3. Condensate in even dimensional spacetimes . First we consider

odd values of the spatial dimension D. In this case   is an integer and the

corresponding Legendre function in (15) is expressed in terms of the hypergeo-

metric function as follows:
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Substituting this into the expression for the regularized fermionic condensate, we

get
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The expansion of the right-hand side of this expression is given by the formula

[25]

       








0

, 22lnsinh2-1 1; ;-1 ,
n

n
nn ssbam

i
simimF (21)

for the hypergeometric function. In this formula,
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where (c)
n
 is Pochhammer's symbol,      xxx   is the digamma function

(here we use the notation  x  for the digamma function instead of the standard

one  x  in order to avoid the confusion with the fermion field  ). With the

use of (21), we have the following expansion
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where 
lC  are the binomial coefficients and the dots stand for the terms which

vanish in the limit 0s . As it is seen from (23), we have the power-law

divergent terms, logarithmically divergent term, and the finite part. Note that the

coefficients (22) can also be written in the form
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On the basis of the expansion (23), taking into account the finite renormalization

terms, the renormalized fermionic condensate is written in the form
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where we have used the relation       imim Re1Re  which directly

follows from the formula     zzz 11   for the digamma function (see [25]).

In (25), the coefficients f
l
 should be fixed by an additional renormalization

condition (for a discussion of ambiguities in the renormalization of the expectation

value of the energy-momentum tensor in the Hadamard renormalization procedure

for general number of spatial dimensions see [26]). As such a condition we require

that 0
ren

  in the limit m . By using the expansion
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with B
2n
 being the Bernoulli coefficients, and requiring the cancellation of the

terms in (25) with positive powers of the mass, we find
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This relation defines the values of the coefficients f
l
 in the expression (25) for

the renormalized fermionic condensate. In particular, one has f
1

 = -1/6 for

D = 3, f
1

 = -1/6, f
2

 = -17/20 for D = 5, and f
1

 = -1/6, f
2

 = -47/20, f
3

 = -5297/630
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for D = 7. In the cases D = 3 and D = 5 from (25) one finds
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For D = 3 the result (28) coincides with the corresponding expression obtained

previously in [9]. For a massless field the renormalized fermionic condensate

vanishes. For large masses, 1m , the condensate behaves as   mD . In

Fig.1 we have plotted the fermionic condensate as a function of m  for D = 3

and D = 5. In these cases the fermionic condensate is negative for massive fields.

4. Fermionic condensate in odd dimensional spacetime. In the

renormalization procedure we need the expansion of the expression on the right-

hand side of (15) near the point 1 . For even values of D, this expansion for

the associated Legendre function directly follows from the formula
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The standard definition of the hypergeometric function in terms of the series over

s provides the required expansion. For the case under consideration   is a half-

Fig.1. Fermionic condensate versus m  for the spatial dimensions D = 3 and D = 5.
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integer and, hence, the second term on the right-hand side of (29) does not

contribute to the finite part, whereas the first term is finite in the limit 0s .

Substituting expression (29) into formula (15) and using the expansion for the

hypergeometric function in the second term on the right-hand side, we find the

following expansion for the regularized fermionic condensate
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where, as before, the dots stand for the terms which vanish in the limit 0s .

From formula (30) we find the following expression for the renormalized

fermionic condensate:
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where the coefficients c
l
 are determined from the renormalization condition

0
ren

  for m . From this condition it follows that
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This leads to the following formula for the fermionic condensate
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This expression coincides with the result obtained in [10] by using the point-

splitting procedure and the adiabatic subtraction. Hence, we have shown that the

different renormalization schemes give the same result for the renormalized

fermionic condensate. The sign of the fermionic condensate (33) coincides with

the sign of   21 D . For large values of the mass, 1m , the fermionic

condensate (33) is suppressed by the factor 
 mDD em 2
. Unlike to the case of

odd D, in even number of spatial dimensions the fermionic condensate for a

massless field differs from zero (see also [10]):
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 (34)

In Fig.2 the dependence of the fermionic condensate on m  is presented for

several values of the spatial dimension.
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5. Interacting scalar and fermion fields. Nonzero fermionic condensate

can be of considerable importance in interacting field theories. As an example,

here we consider a system of interacting fermionic and scalar fields described by

the Lagrangian density

   , 
22

1

2

1 222  





 m
i

MgL (35)

with the coupling constant   having the dimension (length)D
 
-2. The corresponding

field equations read

    , 0, 02 22  
 miM (36)

where   stands for d'Alembert operator for scalar fields.

Assume that the field   is quantized and the field   is a classical field. If

ren
  is the renormalized fermion condensate, then the classical dynamics of

the scalar field is described by the equation

  . 02
ren

2 M (37)

As it is seen, the effect of the interaction of the scalar field with the fluctuations

of the fermionic field is equivalent to the change of the mass term. For a general

background the effective mass depends on the spacetime point. In the case of dS

bulk the fermion condensate is constant and the interaction leads to a constant

shift in the squared mass term for the scalar field. In general, this shift can be

negative and under the condition 02
ren

2 M  the effective mass becomes

Fig.2. Fermionic condensate as a function of m  for D = 2, 4, 6.
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tachyonic. The tachyonic mass may lead to an instability of the corresponding

field theory (for instabilities in interacting scalar field theories induced by

background geometry, nontrivial topology and boundaries see [27]). Note that, in

a similar way, the quantum fluctuations of the scalar field lead to the correction

of the fermionic mass term in the form 
ren

2 . In a more general case of a

scalar field with the potential  V , the interaction with the vacuum fluctuations

of a fermionic field leads to the correction with the effective potential

    2

reneff  VV . In particular, this type of correction to the inflaton

potential can have important consequences in the inflationary scenario.

Similar to the case of the system of interacting fermion and scalar fields, the

nonzero fermionic condensate leads to the shift of the fermion effective mass in

the Nambu-Jona-Lasinio type models. These models contain four fermion inter-

action term  2g  in the Lagrangian density, with g being the four fermion

coupling constant. They were applied to describe the dynamical symmetry breaking

in electroweak theory and quantum chromodynamics (for symmetry breaking in

the Nambu-Jona-Lasinio model in curved spacetime see, for example, [28,29]).

The corresponding effective mass for a fermion field becomes  ren2  gm .

Again, we see that, depending on the fermionic condensate, the effective mass may

become negative.

6. Conclusion. In the present paper we have investigated the fermionic

condensate for a massive spinor field in dS spacetime in an arbitrary number of

spatial dimensions. In Section 2, an expression for the corresponding regularized

quantity is derived assuming that the field is prepared in the Bunch-Davies vacuum

state. The renormalization procedure for even and odd dimensional spacetimes is

considered separately. In even dimensional dS spacetime the renormalized fermionic

condensate is given by expression (25), where the coefficients are obtained from

the condition of vanishing the condensate in the limit m . These coefficients

are defined by the relation (27). For large values of the field mass, the condensate

decays as  m1  and it vanishes for a massless field field. In odd dimensional

dS spacetime, for the renormalized fermionic condensate we derived the formula

(31), with the coefficients c
l
 defined from the relation (32). In this case, for large

values of the mass the fermionic condensate decays exponentially. Unlike the case

of even dimensions, for a massless field the condensate does not vanish.

Another vacuum state in dS spacetime is the hyperbolic vacuum [30-33]. It

is naturally realized by the normal modes of quantum fields in the coordinate

system foliating the spacetime by spatial sections with constant negative curvature.

Unlike to the Bunch-Davies vacuum, the hyperbolic vacuum is not maximally

symmetric and the corresponding fermionic condensate will depend on time. This

feature has been demonstrated for the expectation values of the field squared and
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energy-momentum tensor in the case of a scalar field (see [30,33]). For a massless

fermionic field we expect that the difference in the fermionic condensates for the

Bunch-Davies and hyperbolic vacua will decay at late stages of the expansion like
Dt1 . This is in agreement with the general result in accordance of which the

Bunch-Davies vacuum is a future attractor for relatively large class of states in dS

spacetime. Note that the renormalization of the fermionic condensate for the

hyperbolic vacuum is reduced to the renormalization for the Bunch-Davies vacuum

and the difference in the corresponding VEVs is finite.

In interacting field-theoretical models (self-interacting fermionic field, fermionic

fields interacting with scalar or vector fields) the formation of nonzero fermionic

condensate may lead to phase transitions. We have considered two examples. The

first one presents a system of scalar and fermionic fields with the interaction

Lagrangian density proportional to 2  and the second one corresponds to the

Nambu-Jona-Lasinio type model with the self interaction  2 . Depending on

the value and sign of the condensate, the effective mass squared may become

negative. Scalar-fermionic models with the interaction  
gconst  have

also been considered in the literature. In this type of models the nonzero

condensate may lead to the change of the sign of the kinetic term for the scalar

field (ghost field).
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ÔÅÐÌÈÎÍÍÛÉ ÊÎÍÄÅÍÑÀÒ Â ÏÐÎÑÒÐÀÍÑÒÂÅ-
ÂÐÅÌÅÍÈ äå ÑÈÒÒÅÐÀ

À.À.ÑÀÀÐßÍ1, Å.Ð.ÁÅÇÅÐÐÀ äå ÌÅËËÎ2, À.Ñ.ÊÎÒÀÍÄÆßÍ1,
Ò.À.ÏÅÒÐÎÑßÍ1

Èññëåäîâàí ôåðìèîííûé êîíäåíñàò â (D+1)-ìåðíîì ïðîñòðàíñòâå-âðåìåíè

äå Ñèòòåðà ñ ïîìîùüþ ðåãóëÿðèçàöèè îáðåçàþùåé ôóíêöèåé. Äëÿ óñòðàíåíèÿ

íåîäíîçíà÷íîñòè ïåðåíîðìèðîâêè â ñëó÷àå ìàññèâíûõ ïîëåé, íàêëàäûâàåòñÿ

äîïîëíèòåëüíîå óñëîâèå, òðåáóþùåå çàíóëåíèå êîíäåíñàòà â ïðåäåëå áåñêî-

íå÷íîé ìàññû. Äëÿ áîëüøèõ çíà÷åíèé ìàññû ïîëÿ êîíäåíñàò ýêñïîíåíöèàëüíî

çàòóõàåò â ïðîñòðàíñòâå-âðåìåíè íå÷åòíîé ðàçìåðíîñòè è ñòðåìèòñÿ ê íóëþ

ïî ñòåïåííîìó çàêîíó â ÷åòíî-ìåðíîì ïðîñòðàíñòâå-âðåìåíè. Äëÿ áåçìàññîâîãî

ïîëÿ ôåðìèîííûé êîíäåíñàò îáðàùàåòñÿ â íóëü ïðè íå÷åòíûõ çíà÷åíèÿõ

ïðîñòðàíñòâåííîé ðàçìåðíîñòè D è îòëè÷åí îò íóëÿ ïðè ÷åòíîì D. Â

çàâèñèìîñòè îò ïðîñòðàíñòâåííîé ðàçìåðíîñòè ôåðìèîííûé êîíäåíñàò ìîæåò

áûòü êàê ïîëîæèòåëüíûì, òàê è îòðèöàòåëüíûì. Èçìåíåíèå çíàêà êîíäåíñàòà

ìîæåò ïðèâåñòè ê íåóñòîé÷èâîñòÿì âî âçàèìîäåéñòâóþùèõ òåîðèÿõ ïîëÿ.

Êëþ÷åâûå ñëîâà: ôåðìèîííûé êîíäåíñàò: ïðîñòðàíñòâî-âðåìÿ äå Ñèòòåðà:

      âàêóóì Áàí÷à-Äåâèñà
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