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In this work, we investigate the dynamics of Bianchi type VI, space-time in the framework
of AR, T) theory of gravity where R stands for Ricci scalar and 7 stands for the trace of the stress
energy-momentum tensor with Modified Renyi Holographic Dark Energy (MRHDE). With the
specific choice of the functional f(R,T)= f,(R)+ f,(T)=p, R+, T where f(R) and f,(T) are
arbitrary functions of R and T respectively and p, and p, are two parameters, we have obtained
the exact solutions of the model by considering the energy density of MRHDE and by using a
law of variation for the Hubble parameter H. It is found that our model leads to the accelerated
expansion of the Universe. The EOS parameter ,, > -1 indicates that our cosmological model
behaves like a quintessence dark energy model which is consistent with the recent observations. A
correspondence between MRHDE and quintessence dark energy is established. The quintessence
dynamics of the potential and scalar field are reconstructed, which illustrates the late-time cosmic
acceleration. All physical parameters are calculated and discussed graphically.

Keywords: MRHDE: f (R,T ) theory of gravity: quintessence: EOS parameter:
statefinder parameter

1. Introduction. From the observational astrophysical results [1-5] it is
confirmed that our Universe is accelerating. The source driving this acceleration is
known as dark energy (DE), an unknown form of energy with negative pressure,
whose origin is still a mystery in modern cosmology. Recent experiments indicates
that DE constitutes about 70% of present total cosmic energy. However, so far, the
nature of DE is still unknown. The most familiar candidate for dark energy is the
cosmological constant A which is characterized by the equation of state p=wp
with @ =—-1 where p is the pressure and p is the energy density of DE. But from
theoretical point of view, it fails to resolve the hurdle of fine-tuning and cosmic
coincidence problem [6,7]. There are several candidates to play the position of dark
energy (DE), which is the dominant part of the Universe. Some of them are
quintessence [8], phantom [9], k-essence [10], tachyon [11] and so on.

In recent studies, to understand the nature of the Universe, a new DE model
has been constructed based on holographic principle named as holographic dark
energy (HDE) was first put forward by Hooft [12] and Susskind [13]. According
to this principle, the entropy of the system scales not with its volume, but also
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its surface area (L*) and arrived at a conclusion that in quantum field theory a
short distance cut-off is related to a long-distance cut-off due to the limit set by
the black hole formation [14]. By taking p,; as the quantum zero-point energy
density caused by a short distance cut-off in a region of size L, the total energy
density should not exceed the black hole mass of the same size, giving
r Pupr S LM 12, . The maximal value L allowed is the one saturating this inequality,
giving the HDE density as pyp; = 3¢*M ;L’z , Mp is the reduced Planck mass with
M;Z =8nG and 3¢* is the numerical constant [15].

The late-time acceleration of the Universe can be studied by two ways- by
introducing DE in our Universe and secondly by modifying General Relativity
(GR). There are various modifications of Einstein theory. The presence of a late-
time cosmic acceleration of the Universe can be explained by f° (R) gravity [16].
Harko et al. [17] have proposed a new generalized theory known as f (R,T)
gravity. According to this theory, gravitational Lagrangian involves an arbitrary
function of the scalar curvature R and trace of the energy-momentum tensor 7.
The f (R,T) gravity model depends on a source term, representing the variation
of the matter stress-energy tensor with respect to the metric. Mishra and Sahoo
[18] have studied Bianchi type cosmological models assuming f (R, T)= R+2f (T)
In that work, Mishra and Sahoo have obtained exact solutions to the modified
field equations by assuming a specific anisotropic relation. Adhav [19] obtained
exact solutions of the field equations for LRS Bianchi type-1 space-time with
perfect fluid in the framework of f (R,T) theory of gravity. The f (R,T) gravity
models can explain the late time cosmic accelerated expansion of the Universe.

Recently, several entropy formalisms have been used to construct and investigate
the cosmological models. Some new HDE models are constructed such as Tsallis HDE
(THDE) [20,21], Sharma-Mittal HDE (SMHDE) [22] and RHDE model [23].
Among these models, a new dark energy model proposed by Moradpour et al. [23]
named the Rényi holographic dark energy (RHDE) model for the cosmological and
gravitational investigations shows more stability by itself. Several researchers have
discussed RHDE in different theories of gravity. Using the Rényi entropy, the
modified Friedmann equations are obtained [24-26]. The inflation may be found in
the Rényi formalism suggested by Ghaffari et al. [27]. Dubey et al. [28] have studied
interacting RHDE in Brans-Dicke theory of gravity. Saha et al. [29] have investigated
RHDE in the framework of Kaluza-Klein space-time. Prasanthi & Aditya [30] have
explored RHDE in General Relativity (GR) in Bianchi type VI, metric. Dubey et
al. [31] have worked out RHDE in a flat Universe.

The form of the Bekenstein entropy of a system is S = 2/4 where A =4nl?

and L is the IR cut-off. Rényi entropy [23] can be written as S = %log[STA+ lj =
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= %log(nS I+ 1). By considering p,; dV o« TdS where V and T denote the volume

and temperature of the system, the expression of RHDE assumes the form

2
Ppr = 83 CLz (n5L2+ 1)_1 . By considering Hubble horizon as a candidate for IR cut-
s

3¢*H?
8n(nd/ H? +1)
where c¢- is a numerical constant. Since the DE occupies almost 70% of the
content of the Universe today, it is rational to assume that the density of DE
is a function of the Hubble parameter H and its derivative w.r. to time [32]. In
cosmology anisotropic and spatially homogeneous universes have obtained much
interest. The major observational evidence from CMBR [33] has been considered
to support the existence of a transition from an anisotropic phase of the universe
to an isotropic phase [34]. It is believed that at the early stages of evolution, the
Universe is, in general spatially homogeneous and anisotropic in nature. Bianchi
type spaces are usually used for studying spatially homogeneous and anisotropic
cosmological models. Recently, many researchers have presented interesting
cosmological models in the presence of DE within the background of anisotropic
Bianchi space-times. Chaubey and Shukla [35] obtained a new class of Bianchi
cosmological models in f (R,T) gravity by using a special law of variation.

Motivated by the above investigations we present in this paper Modified Rényi
Holographic Dark Energy (MRHDE) in f(R,T) theory of gravity by considering the
energy density in the framework of Bianchi type VI, Universe. Here we modify the

3¢PH*+BH

sn(nd/H2 +1)

offie. L=H"", the energy density of RHDE is obtained as p, =

2

energy density of RHDE as p,;= where [ is an arbitrary

dimensionless parameter.

The outline of the paper is as follows: Section 2 describes the f° (R, T) gravity
formalism. The metric and field equations are discussed in Section 3. In Section
4, we derive the solutions of field equations. Sections 5.1 and 5.2 deals with
Statefinder parameters and anisotropy parameter respectively. The stability analysis
and energy conditions are described in Section 6. Various parameters are discussed
graphically in Section 7. Section 8 deals with correspondence between MRHDE and
quintessence scalar field. The paper ends with concluding remarks in Section 9.

2. Gravitational field equations of f(R,T) gravity. The gravitational
field equations of f(R,T) theory are derived from the Hilbert-Einstein variation
principle. The action for the modified f (R, T) gravity is

S= i [/ TN g e [ i, 0

where L is the matter Lagrangian density.
The stress-energy tensor of matter [36] is
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W-gL.) )

2 3
T eed
where trace T = g”T

By assuming that L of matter depends only on metric tensor components
8; and not on its derivatives, we have obtained the field equations of f (R,T)
gravity as

fR(Rs T)Rg/_%f(R> T)glj'+(g[jh_viv_j)fR(R’ T):gTETg/‘_fT(Rs T)];‘j_fT(R> T)eg/‘ »(3)

where
of of
h=v*v_, = -
b Se=Sne fr=o
2
0,=-2T,+g; L,-2g" & @
Gg’fagoLB

and V' is the covariant derivative.

The problem of the perfect fluids described by an energy density p, pressure
P, and four velocity u' is more complicated because there is no unique definition
of L . Here we have assumed T, i is of the form

T; = (p+pDE )uiuj_pDEgij ) &)
where
L,==pPpg, uiuizl, uiVjuizo. (6)
Using Egs. (5) and (6) in Eq. (4), we get
05 =-2T;=Pprg; - (7)

In general, the field equations also depend through the tensor 6, on the physical
nature of the matter field. Hence in the case of f (R, T) gravity, depending on
the nature of the matter source, various theoretical models corresponding to matter
contributions for f (R,T) gravity are obtained. Harko et al. [17] derived three
classes of these models:

R+2£(T)
f(R.T)=1 fi(R)+ £,(T) (8)
H(R)+ £ (R)15(T).
Here we have focused in the second case i.e. f(R,T)=f,(R)+ f,(T)=p, R+p, T
where f;(R) and f,(T) are arbitrary functions of R and T respectively and p,
and p, are two parameters.

The gravitational field equations obtained from Eq. (3) with the use of Egs.
(7) and (8) and the aforesaid choice of f (R,T) is
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1 i) 8m+ L,
Ri'__g R— (pDE"‘ j 2 8ij _(—)T; 9
y 2 2 Ml y M] y ( )

3. Metric and field equations. The Bianchi type VI, metric is given by
ds® = a’tz—Aza’xz—Bzez"dyz—Czefzxdz2 , (10)

where A, B and C are cosmic scale factors and functions of cosmic time # only.
The energy momentum tensor for dark matter (pressure-less) is

T/ = diagp,,, 0,0,0], (11)
where p, is the energy density of dark matter (DM).
The energy momentum tensor for MRHDE is

T;: diag[pDE’_(DDEpDE>_(DDEpDE>_mDEpDE]7 (12)

where p,; is the energy density and ©,; = ppz/pps is the EOS parameter of
MRHDE.

T =T/ 13
Using Egs. (11)-(13), the field equations (9) for the metric (10) are obtained as
B C BC 1 l6m+3u, 15y

—t—t—+—=——"=p, . ——p, +
B Cc BC L o PpE 2, (pm pDE) (14)
A C AC 1 16m+3p, 1y
- = Tz 1z +
A C iC 1 2, PpE 2, (Pm pDE) (15)
A B 4B 1 167 +3p, W,
—t =t ————=——""=p ——=(p, +
TR ET P o (P +Pos) (16)
AB BC C4 1 16w+ 3y, [Th
—t—t———=——=(p, + +—=
4B BC A P o (P +Ppe) o Ppe (17)
B C
———=0. 18
B C (18)
Integrating Eq. (18) and assuming integrating constant to be unity, we get
B=C. (19)
Using Eq. (19) in Egs. (14)-(17), we get
B B* 1 16m+3y, 1%y
2—+—+—=——""=pr——=p,, +
TR AT Py (P +Por) (20)

A B
E+E+___:TPDE_T(pm+pDE) (21)
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AB B* 1 167+ 3p m
22—t ———=——"2(p + +—2 .
1B B L 2 (pm pDE) o PpE 22)
The energy conservation equation is
pm+pDE+3H(pm+pDE+pDE):O> (23)

where overhead (.) denotes differentiation w.r. to cosmic time £
Throughout the study, we have considered that there is no interaction between
DM and MRHDE.

4. Solutions of field equations. The spatial volume V is given by
V=4B*=a’, (24)
where a is the average scale factor.
The Hubble's parameter H is defined by

a v o1 1(4 _B
H=—=—=-\H+H +H,|]=—| —+2—|,
4 3V 3< xT Ay z) 3(14 BJ (25)

where H, =A/A and H,=H, =B/B are the directional Hubble parameters in

the directions of x, y and z axes respectively.
The deceleration parameter g is defined as

ad
q= e (26)
Egs. (20)-(22) are three field equations with five unknowns 4, B, p,,, pps and
P, S0, we are in search of two extra conditions:

(i) The MRHDE density is defined as
3¢’H*+BH
PpE T
87{2“] 27)
H

(ii) The relation between average Hubble parameter H and average scale factor
a as proposed by Berman [37]

H=na" (n>0). (28)
From Egs. (25) and (28), we get the average scale factor a as
a= (t+ k )" (29)

k, is a constant of integration.
The spatial volume V is obtained as

V=dAB=a’=(t+k)". (30)
From Eq. (30), we get
A B 3n

—+2—= .
A B t+k (31)
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From Egs. (20) and (21), we obtain

2
A B Kk 42
———=—ex —dt
A BV J B 4 (32)
B A
k, is a constant of integration.
Following Adhav [38], we assume
B A4 4
Using Eq. (33) in Eq. (32), we get
A B k
YRR e, (34)

By the use of Egs. (31) and (34) and then integrating, we obtained the scale factors
as

o . 2k e’
A=k (H- kl) eXp|:Tz.[(t+ k1)3" dl‘:| (35)
B=k;'(t+ k) exp —ﬁjidt , 36
3 (k) (36)

where k, is a constant of integration.

The Hubble parameter H is obtained as
n
H= .
t+k (37)
The Hubble parameter H decreases as cosmic time ¢ evolves and approaches to
a small value at the later stage of the Universe.

The deceleration parameter ¢ is obtained as
1
g=-1+—. (38)

n
From Eq. (38), we can arrive at a conclusion that for ¢>0 (0<n<1) our Universe
is in decelerating phase and for ¢<0 (n>1) our Universe is in accelerating phase.
The MRHDE density p,, is obtained as

(3 c*n—- B)n3
8n(t+ k)2 [rd(r+ &, ) + %]
The energy conservation equation for matter obtained from Eq. (23) is
p,+3Hp, =0. (40)
Putting the value of H in Eq. (40) and then integrating, we get

Ppe =

(39)
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Pm :p0(t+ kl)_3n H (41)

where p, is a constant of integration.
The energy conservation equation for MRHDE obtained from Eq. (23) is

Ppe + 3H(PDE + pDE): 0, Ppe=®pePpE - (42)
Putting the values of p,; and H in Eq. (42), we get
o __1+[z+klj 2 278(t+ k)
P 3n )| t+k  wd(e+k, ) +n? (43)

(3c2n— B)n3
8n(r+k,)° [ns(z+ k) + nz]

{H k, j 2 2md(t+ k) (44)
xq—1+ + 5 .
3n )| t+ky wd(t+ k) +n?

5. Statefinder and anisotropy parameters.

Ppe =Ppe®Opg = x

5.1. Statefinder parameters. Sahni et al. [39] proposed a cosmological
diagnostic pair {r, s} called statefinder parameters, which is defined as
_ 'd'3 . S= r—1
aH 3[q_ 1] (45)
2
to differentiate among different forms of dark energy. The Statefinder is dimen-
sionless and, like the Hubble and deceleration parameters H and ¢, is constructed
from the scale factor of the Universe and its derivatives only. For ACDM
(cosmological constant cold dark matter) models, the statefinder parameters have
the value {r, s} ={1, 0}.
For our model, the {r, s} parameters take the form
9s 92

1= 2
r S (46)

r

5.2. Anisotropy parameter. The anisotropy parameter A, is defined as

3 2 k2 -2t
- s (H-H) =— 2
3H? S 9n(t+k )"
6. Stability analysis. In this section we have examined the stability of our
model. The square speed of sound is defined as v’ = pp, /ppe - The sign of v?
plays a vital role for stability analysis of a background evolution of cosmic models.

The model is stable if v >0 and if v> <0 the model is classically unstable [40].
Also, the casualty condition must be satisfied. It means that the sound speed is

4,

(47)
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less than the speed of light.
For our model, v’ takes the form

) 218(t+ ky ) +n? 12, 2md(1+ Ky ) “1lx
Nk Plaserk o] | 137 3mfud(es &, 7 + 0]
G ord(e+ &, + 0] _ 2nnd %)
b k)t +n2e k2| 30 ksl &, P+ 2]

The Energy Conditions namely, Weak Energy Conditions (WEC), Dominant
Energy Conditions (DEC) and Strong Energy Conditions (SEC) are respectively

\%

given by
D Ppe 20
(1D Ppe+ Ppr 20
(I11) Ppe+3Ppp 20

The left-hand sides of (I), (II) and (III) based on Egs. (43) and (44) have
been plotted in Fig.2a and found that (I) p,; 20, (I) ppg+ppz=0 and (III)

0.002

vrY

PoE

pm’ pDE

0.001

0.000 f

L

-0.47 f o]

L]

-0.49

(DDE

-0.51 ¢

t

Fig.1. a) The variations of p ~and p, versus . p —0 and p, —0 as r— o as seen
from the above figure. b) The graph of ®,, versus 7. ®,, >-1 as observed from the above figure.
Thus, our cosmological model corresponds to quintessence DE.
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Ppe+3ppe <0. So, WEC and DEC are satisfied whereas SEC is violated. The
violation of SEC gives anti-gravitational effect for which Universe gets jerk and
thus our model exhibits transition from early decelerating to present accelerating
Universe. So, our model is in harmony with recent cosmological observations.

[ a |

o 500 i WEC ]

.g [ DEC ]

'-é L 4

o 0

(8] r 4

> r 4

o L ]

G,C) 3 4

i --500 r SEC ]

-1000 *» : ' ' ' : ' 14

3 b 1

6x10™ :

. 4x10" :' 1
< b

2x10™ E

0.00 0.01 0.02 0.03 0.04 0.05

t

Fig.2. a) The graph of Energy Conditions versus cosmic time z. WEC and DEC are satisfied
whereas SEC is violated. The violation of SEC gives anti-gravitational effect for which Universe
gets jerk and thus our model exhibits transition from the early deceleration to present cosmic
acceleration. So, our model is in good agreement with recent cosmological observations. b) The
graph of A, versus 7. A, =0 as ¢ — oo as observed from the figure. Thus, our Universe approaches
isotropy at the later epoch.

7. Correspondence between MRHDE and quintessence scalar field.
The pressure and energy density for quintessence scalar field [41] are given by

P, =%—V((p) (49)
-2
Po =%+V(cp), (50)

where ¢ denotes the scalar field and V((p) is the scalar field potential.
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The EOS parameter o, is defined

as

_Po_ 9’ =2V(9)

" opy @ +20(e)

Egs. (39) and (50) together implies
(30211— B)n3

8n(t+k, )2 [TES(H ky )2 + nz] 2

Egs. (43) and (51) together implies

2
Egs. (52) and (53) together implies

v (M) V(o)-

1-opg

(3c2n— B)n3

V@ﬁz(l_;bEj 8+ k,

Yl &, o+ 2

1.0
0.8 [

0.6 |

V(g), ¢

04t

02 f

00¢g, . . -

-0.48 ¢

o -0.50 f

sq

-0.52

-0.54 k.

dakaid,

e

10 15
t

20

569
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Fig.3. a) The plots of scalar field potential 7 (¢) and scalar field ¢ versus cosmic time ¢ It
is clear from the above figure that V' (¢p) decreases and ultimately tends to zero whereas ¢ decreases
and approaches to small value at the later stage of the Universe. b) The plot of vf versus cosmic
time #. vf is negative throughout the evolution of the Universe. It clearly manifests the unstable

nature of the Universe.
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S

Fig.4. The plot of r versus s. From the above figure it is observed that the curve (r, s) passes
through the point (1, 0). Thus, it indicates that the model corresponds to ACDM model at the
later stage of the Universe.

Using Eq. (54) in Eq. (53) and then integrating, we get
12
(302}1— ﬁ)n3
8n(t+ k) (et k) +

0=, +[| (1+op) dt, (55)

where ¢, is a constant of integration.

8. Graphical discussions. The graphical representations of various param-
eters are discussed here. The numerical values used in the graphs are
c=1, n=25, B=0.5, k£ =0.03, k,=0.006,

00=02, ©,=0.1 and 5=2. (56)

9. Conclusions. In this paper, we have constructed MRHDE in f(R,T)
theory of gravity in the framework of Bianchi type VI, Universe. To obtain the
exact solutions of the field equations, we have considered the law of variation for
the Hubble parameter H as proposed by Berman [37]. We have studied the
isotropy and the expansion of the universe. It is seen that the anisotropic parameter
A4, —>0 as t > i.e., our model becomes isotropic at later age of the universe.
And hence our results are in favour of the recent observational data which suggests
the present-day isotropic behaviour of the universe. Also, it is observed that the
deceleration parameter, ¢>0 (0 <n<1) which implies that our universe is in a
decelerating phase and ¢<0 (n>1) indicates that our universe is in accelerating
phase. In this paper, we have seen that o, >—1, which depicts that our model
behaves like quintessence DE. From the study of statefinder parameters, we can
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conclude that our model corresponds to ACDM model as cosmic time evolves.
Again, it is observed that vf is negative at late times, which indicates that our
investigated model is unstable. It is found from Fig.2a that WEC and DEC are
satisfied whereas SEC is violated. The violation of SEC gives anti-gravitational
effect for which universe gets jerk and thus our model exhibits transition from
the early deceleration to present cosmic acceleration. From Fig.3a we can arrive
at a conclusion that the scalar field potential V(cp) decreases and ultimately tends
to zero whereas the scalar field ¢ decreases and approaches to small value at the
later stage of the Universe.

Thus, the physical properties of the model obtained by using Berman's law
provides a very nice description of the transition from the early deceleration to
present cosmic acceleration, which is an essential feature for evolution of the
Universe. Moreover, the correspondence between MRHDE and quintessence scalar
field is constructed in our model. The quintessence dynamics of the potential and
scalar field are reconstructed which describes the current accelerating stage of the
Universe. This shows that our model strongly agrees the present-day observations.
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MOINDPULTMPOBAHHAA T'OJIOTPAOUYECKAA
TEMHAA SHEPI'MA PEHbU (MRHDE) B TEOPUU
TPABUTALIMN f(R,T)

O.BXAPAJIN, K.OAC

B pabore uccnenoBana qMHaMKMKa ITPOCTPaHCTBAa-BpeMeHU Tumia besanku VI B
paMKax TEOpUHU TpaBUTALUU [ (R, T), rae R - ckansip Puuum, a T - cien TeH30pa
SHEPrUM-UMITYJIbCa HaMpsbkeHrs ¢ MoauduiimpoBaHHOM rosiorpachryeckoi TeMHON
sHeprueit Penou (MRHDE). [Ipu koHKpeTHOM BblIOOpe (hyHKIIMOHANA [ (R, T)=
= fi(R)+ £,(T)=p, R+n, T, tme f,(R) u f,(T) - nmpousBonbHble QYHKUMU OT
R u T - cOOTBETCTBEHHO, a W, M W, - ABa MapamMeTpa, Mbl MOJYYUJIU TOYHBIE
pelIeHusT MOJeNIr, YYUThIBas IIoTHOCTh 3Heprud MRHDE u ucrnonbs3yst 3akoH
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n3MeHeHUs napameTpa Xao6oima H. OOGHapyXeHO, 4TO Hallla MOJIEJIb IIPUBOIUT K
yCKOpeHHOMY pacumipeHuto Beenennoii. [Tapamerp EOS o, > -1 yka3seiBaer, 4yto
Hallla KOCMOJIOTMYECKasl MOAEIb BeAeT ce0sl KaK MOMIE/Ib TEMHOM SHEPIUY KBUHT-
BCCEHIIUM, KOTOpasl COoIacyeTcsl ¢ HeAaBHUMHU HaOMIOACHUSIMU. YCTaHOBIEHO
cootBeTcTBUEe Mexny MRHDE u kBuHT3CceHIMeil TeMHOU sHepruu. PekoH-
CTPYUPYETCsS KBUHTACCEHLIMSI JUMHAMUKY MOTEHLMANA U CKAJISIPHOTO IT10JIsI, KOTOpast
WLTIOCTPUPYET KOCMUYECKOE YCKOpPEeHME B TO3IHEM BpeMeHU. Bce dusmueckue
mapamMeTpbl PacCYUTHIBAIOTCS U OOCYKIAIOTCSI B IpaMUYeCcKOM BUJE.

Kuroueswie ciioBa: MRHDE: f (R, T ) meopus epaguMaui; KEUHMICCEHUUS: NAPAMEMD
FEOS: napamemp Statefinder
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