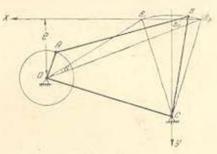
Տեխնիկական գիտութ, սեբիա

XI, N 1, 1958

Серия технических наук

научные заметки


Α. Τ. ΓΑЗΑΡΟΒ

ОБ ОДНОМ ОБОБЩЕНИИ ЗАДАЧИ ПРОФ. БАРАНОВА

В качестве основных независимых параметров, характеризующих шариирный четырехзвениик, примем четыре величины a, b, e и α (рис. 1), где: .

- е = эксцентриситет шарнирного четырехзвенника,
- угловая амплитуда качання коромысла,
- утол, связанный с коэффициентом изменения скорости хода известным соотношением [1]

$$K = \frac{180^{\circ} + 0}{180^{\circ} - 0}.$$

Piic. I.

а — амилитуда колебания точки В.

Длины звеньев механизма выражаются формулами [2]:

$$I_1 = a \sqrt{1 - \frac{e}{a} \lg_2}; \tag{1}$$

$$l_2 = a + 1 + \frac{e}{-\operatorname{ctg} \frac{6}{2}}; \tag{2}$$

$$l_3 = \frac{a}{\sin a} ; (3)$$

$$I_4 = \frac{a}{\sin \alpha} \left[1 + 2\frac{e}{a} \frac{\sin \alpha \sin (\alpha - \theta)}{\sin \theta} \right]$$
 (4)

Отношение длины кривошина к длине шатуна будет:

$$\lambda = \sqrt{\frac{1 - \frac{a}{a} \operatorname{tg} \frac{\theta}{2}}{1 + \frac{e}{a} \operatorname{ctg} \frac{\theta}{2}}}$$
 (5)

Отложив на прямой отрезки

$$B_sB_a'=B_a'B_s=a$$
,

выберем начало координат в точке B_0 (рис. 1), являющийся серединой отрезка B_1B_2 и направим ось x по B_1B_3 влево, а ось у перпенликулярно к ней вниз.

Положение криношипного центра в этой системе координат будет определяться координатами.

$$x = 1 \quad \overline{a^2 - e^2 - 2a_0} c_1 g^{-1} .$$

$$y = e.$$

Возвысив в квадрат обе части этих равенств и сложив почлению получим

$$x^2 = a$$
 $y^2 - 2ay \cot \theta$,

Это уравнение можно представить в виде

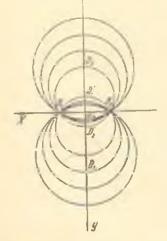
$$x^{q} + (y - a \operatorname{cig} \theta)^{q} = \left(\frac{a^{-2}}{\sin \theta}\right).$$

Полученное уравнение выражает совокупность окружностей, имеющих общую хорду B_0B_0 с раднусами

$$R = \frac{a}{\sin a}$$

и координатами центров

on a ctg 9


В области отринательных у

следовательно, в этой области получается вторам совокупность окружностей, имеющих ту же общую хорду, тех же радиусов, с координатами центров (рис. 2)

$$ou - a \operatorname{ctg} 0$$
.

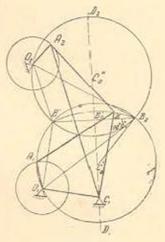
Таким образом, при заланном а каждому соответствуют две окружности, которые, как нетрудно видеть, представляют из себя всиомогательные окружности, применяемые обычно ири графическом методе решения задач (по способу профессора Баранова), на синтез шар-пирных четырехзвенников по заданным: коэффициенту изменения скорости хода и двум крайним положениям коромысла.

Pirc. 2.

Из выражения для координат центра вспомогательной окружности видно, что при K равном трем, центр испомогательной окружности совпадает с точкой B_{α}

Каждая пара вспомогательных окружностей принадлежит двум значениям K, которые связяны между собой уравпением

$$K_2 = \frac{K_1 + 3}{K_2 - 1}$$


Если одному из сопряженных значений K соответствует дуга окружности расположенная в области положительных e под прямой B_1B_2 , то другому соответствует дуга той же окружности, расположенная над ней.

В области отрицательных е будет наоборот.

Допустим требуется спроектировать шарипрный четы рехавенник по заданным a и K. Графическое решение этой задачи производится по способу профессора Баранова (рис. 3).

Центр вращения кривошинов четырехзвенных механизмов, удовлетворяющих поставленному условию, располагаются на
вспомогательных окружностях, а центры принеса коромысла на прямой D_1 Из всех
точек вспомогательных окружностей, а также
прямой D_1D_2 могут быть выбраны лишь те,
для которых удовлетворяются условия существования кривошина.

В результате этого построения задача получается дважды неопределимой, ибо во первых за кривошипный центр можно принять бесчисленное множество различных точек, расположенных на вспомогательных окружностях, а для каждого из выбранных кривошиных центров, можно принять за центр

PHC. 3.

привеса коромысла бесчисленное множество различных точек, расположенных на прямой D_1D_2 , удовлетворяющих вышеуказанным условиям.

На практике задача часто может быть сужена, если будет задана величина, по которой можно определить экспентриситет ϵ , а следовательно и положение кривошипного центра.

Решая уравнение (5) относительно е получим:

$$e = \frac{1 - \lambda^2}{\lg \frac{\theta}{2} + \lambda^2 \operatorname{clg} \frac{\theta}{2}} a. \tag{6}$$

Это уравнение дает возможность по заданному к определить е, и, тем самым, вполне определится положение кривошилного центра О, а из уравшений (3) и (4) однозначно определятся длина кривошила и длина шатуна. Однако задача опять остается неопределенной, из-за неопределенности положения центра привеса коромысла.

Обобщая задачу профессоря Баранова мы получаем неопределенную задачу, но сам метод при этом обобщении значительно вынгрывает, ибо из метода решения конкретной задачи превращается в весьма простой и наглядный метод, который с успехом может быть применей к исследованию шарнирных четырехзвенников.

Совокупность всяомогательных окружностей, изображает геометрически те же закономерности, которые были получены нами аналитически [2], но так как метод, основанный на их использовании, будет являться методом графозналитическим, то во многих случаях он несомненно будет иметь значительное преимущество как перед методом графическим, так и аналитическим.

Так, например, при изучении влияния какого-либо параметра на элементы четырехзвенника, оставляя неизменными остальные три и нарынруя этим параметром, мы получим семейство четырехзвенников, изменение элементов которых при этом варынровании будут наглядно видны из чертежа и оттуда же легко можно получить любые аналитические соотношения, имеющие место при этом варынровании.

Еренанский политехивческий институт им. К. Маркса

Поступило 13 VII 1954

n. s. allgarne,

ՊՐՈՖԵՍՈՐ ԲԱՐԱՆՈՎԻ ՄԻ ԽՆԳՐԻ ԸՆԳՀԱՆՐԱՑՄԱՆ ԾԱՍԻՆ

Uddindinid

Արխատան թում բնալ անդրացված է պրոֆհոսը Բարանավի մի աշխատությունը, որի հետևան քով այդ մեխոդը մասնավոր իմերի լուծումից վեր է ածված ընդհանուր մեխոդի, որի օգնությամբ հնարավոր է ուսումծասիրել չորո օդականոց մեխանիդմեները։

Ստուսվուծ մեկերը գրաֆրանալիտիկական է, որն անկասկած մեծ առավելություններ անի գրաֆիկական և անալիտիկական մեթքողների նկատմամը,

Որոշելով դատողակ մեկամերցմի սիսեան չորս հիմեական պարամեարերով, որոնդ են՝ լարի երկարությունը, Էզոցենարիսիահար (ոչ չամակենարոնը), ընթացրի արագության փոփոխման գործակիցը և կարամիսլային ձոձման ամպլիաուդան, անշրաժերո է ուսումնասիրել այդ պարամեարիրի աղգեցությունը մեկամերվոր չիմնական էլեմենաների վրա։

Հատկապես կարևոր է ուսում նասիրել կարամ իսլային և շարժաթևային կննարոնների դիրրերի ազգեցությունը մեխաներմի էլեժենաների վրա

Թողնելով անդիրվուր յուրաբանչյուր պար<mark>ա</mark>ժետրը և տարավորելով չորրորդ պարաժետրը կստանանք բառօգակ ժեխանիդժների ընտանիքներ, որոնք ընդգրկում են ձժանդակ ընտգծերի ժի ամրողջություն։

Այս գնալում մեկսանիզմի էլեմենանների փոփոխման օրենքը ակրնշայտ է զծադրից, որտեղից պարդ երկրաչափական դատողությամբ կարելի է ստանալ ցանկասած տնալիտիկ շարարերությունը, որը տեղի ունի այդ տարափոխումների դեպքում։

ЛИТЕРАТУРА

- 1. Артоболевский И. И. Теория мехацизмов и машин, 1935 г.
- Газаров А. Т. О некоторых вопросах синтеза щаринримх четырехзненников. "Известия АП Армянской ССР", т. VII. № 2, 1955 г.