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The axially symmetric space-time with magnetized anisotropic generalized ghost pilgrim dark
energy has been investigated in Lyra's geometry. To get a determinate solution, we considered the
expansion scalar 6 in the model is proportional to shear scalar o. We found that the equation
of state parameter of generalized ghost pilgrim dark energy behaves like a phantom dark energy.
By stability analysis our model found to be stable. We have studied the correspondence between
the models of generalized ghost pilgrim dark energy and polytropic gas dark energy. Accordingly,
the potential and dynamics of scalar field of polytropic gas is reconstructed. Moreover, we have
calculated various physical and kinematical parameters of the model and observed that these are
compatible with recent observations.
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1. Introduction. Recent observations of two teams Supernova Cosmology
Project and the High-Z Supernova Team indicate that expansion of the universe
is accelerating [1-7]. An exotic component with large negative pressure is termed
as dark energy (DE) that produces repulsive force which gives rise to the current
accelerating expansion of the universe. One of the simplest candidate for the dark
energy is the cosmological constant A [8-11] having equation of state (EoS)
parameter o =—1, but it has coincidence and fine tuning problems [12]. In order
to avoid such problems, many authors [13-15] have been taken dynamical EoS
parameter o= p/p (<0). The examples of such dark energy candidates are the
quintessence [16,17], phantom [18-20], K-essence [21-23], tachyon [24,25],
quintom [26,27], anisotropic DE [28,29] and so on.

Due to presence of phantom DE in the universe will force it towards big rip
singularity. This indicates that the phantom-like universe possesses ability to
prevent the black hole (BH) formation. Wei [30] has introduced cosmological
parameters for pilgrim dark energy (PDE) model with Hubble horizon and
provided different possibilities for avoiding the BH formation through PDE
parameter. To make the BH free phantom universe some authors suggested
different possible ways. The interacting PDE in flat as well as non-flat universe
with different infrared (IR) cutoffs have investigated by Sharif and Jawad [31,32].
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Sharif and Rani [33], Jawad [34] and Jawad and Debnath [35] have investigated
the PDE cosmological models in various modified theories of gravitation. Jawad
and Majeed [36] have investigated the correspondence of PDE with scalar field
models. The aspects of some new versions of PDE in DGP braneworld have
studied by Jawad et al. [37]. Sheykhi and Movahed [38], Feng et al. [39], Zubair
and Abbas [40], Sadeghi and Khurshudhan [41], Honarvaryan et al. [42],
Hosseinkhani et al. [43,44] have studied the various aspects of ghost and generalized
ghost dark energy (GGDE) models. The GGDE density in terms of PDE is called
as generalized ghost pilgrim dark energy (GGPDE). Jawad [45], Sharif and Jawad
[46], Sharif and Nazir [47], Rao and Prasanti [48], Santhi et al. [49,50] have
investigated the GGPDE model in different contexts.

The Einstein [51] in 1916 introduced his theory of general relativity (GR)
which provides a geometrical description of gravitation. Many physicists attempted
to generalize the geometrical behaviour of the gravitation to include a geometrical
description of electromagnetism. Based on this Weyl [52] proposed a more general
theory by formulating a new kind of gauge theory involving metric tensor to
geometrize gravitation and electromagnetism. Due to non-integrability of length
of vector under parallel displacement, Weyl theory was criticized.

To remove the non-integrability condition Lyra [53] developed a modification
of Riemannian geometry by introducing a gauge function into the structure less
manifold which is known as Lyra's Geometry. Halford [54] pointed out that the
constant displacement vector field  in Lyra geometry behaves like a cosmological
constant A in general relativity. He has also observed that the scalar-tensor
treatment based in Lyra geometry predicts the same effects, within observational
limits, as in Einstein's theory (Halford [55]). Many authors investigated the
cosmological models in Lyra's geometry. Adhav [56] has studied the Bianchi type-
I metric with anisotropic DE for exponential volumetric expansion. Samanta [57]
has investigated the Bianchi type-III cosmological model with anisotropic DE in
the presence of a single imperfect fluid with a dynamical anisotropic equation of
state parameter. Singh et al. [58] discussed the anisotropic Bianchi type-II DE
cosmological model with constant deceleration parameter. Pawar et al. [59] have
investigated a magnetized dark energy of Bianchi type-VI space time with time
dependent cosmological term for uniform and time varying displacement field.
Katore et al. [60] investigated the Kaluza Klein universe with magnetized anisotropic
dark energy in general relativity and Lyra manifold. A Kantowski-Sachs cosmological
model in the presence of an anisotropic dark energy is investigated by Shri Ram
et al. [61]. Katore et al. [62] have studied the Bianchi type-VI holographic dark
energy models in general relativity and Lyra's geometry. Shri Ram et al. [63]
discussed the Kantowski-Sachs cosmological model with anisotropic DE.

To understand the early stages of evolution of the universe the study of anisotropic
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models are very important. Recently, many authors have investigated dark energy
cosmological models with anisotropic background. Das et al. [64] have investigated
the magnetized anisotropic ghost dark energy cosmological model in general relativity
and it is fond that the anisotropy of the universe and that of ghost dark energy tends
to zero at late times and the universe becomes spatially homogeneous, isotropic and
flat. Santhi et al. [65] have studied the anisotropic GGPDE model in general relativity
and observed that the investigated work favors the PDE phenomenon.

Motivated by the above investigations, here we take up the study of the
anisotropic GGPDE in presence of magnetic field for axially symmetric space time
within the framework of Lyra's geometry. The format of the paper is as follows.
In section 2, the metric and field equations are described. Section 3 is devoted
to the solution of the field equations with physical and geometrical properties of
the model. In section 4, the statefinder parameters are adopted to characterize
different phases of the universe. Section 5 deals with the stability analysis. We
have established a correspondence between GGPDE model and polytropic gas dark
energy model in section 6. In last section we have summarized the results.

2. Metric and field equations. We consider the anisotropic and axially
symmetric space-time (Bhattacharya and Karade [66]) as

ds? = di*— A2()d 2 + £2(1)d ©2]- B2 (r)d:* (1)
with the convention x'=y, x*=®, x> =z, x*=¢ and A, B are functions of
time ¢ only while f is a function of the coordinate ¥ alone.

The Einstein's modified field equation in normal gauge for Lyra's manifold
obtained by Sen [67] is given by
1 3 3 i =
i 5 &+ 00— 8 dd =1+ 7,)- . 2
Here ¢, =(0,0,0,B(¢)) is the displacement vector, where B(¢) being time-dependent
gauge function. 7, and Z_’U are the energy momentum tensor for matter (cold
dark matter) and GGPDE which are respectively given by

Tij = diag[l’ 0,0, 0]pm (3)

R

and

fij = diag[la_mG»_mGn_((DG +5)]PG > “4)
where p, and p, are the energy densities of matter and GGPDE while o
is the EoS parameter of GGPDE. The skewness parameter & is the deviations

from o, in the direction of z axis.
The energy momentum tensor for magnetic field is given by

1 w 1 K
Ezj:4_n[FikFﬂg _ZgiJF Fia | )



466 S.D.KATORE, D.V.KAPSE

where Fis the electromagnetic field tensor which satisfied the Maxwell's equation

Pii,j,k]zo’(Fii \/g)j =0. (6)
In this article we consider the electromagnetic field along the x-direction. The
only non-vanishing component of electromagnetic field tensor F,.j is
Fy=1 (constant). (7
In a co-moving co-ordinate system, the field equations for axially symmetric
space-time are obtain as

N2 ..
A AB 1 (f") 3.,
—| A2——— | |- B =putPct )
[AJ 1B A2£fj 4[3 Pm TP AZB2 (8)
A B AB 3., _ . )
A4 B AB 4 ey
. SN2
24 (4 ("), 3.0 !
7*(2} ‘7[7}*26 =06 +8)pe -~ e (10
3. . 3, 24 B
—BB+=B| —+—|=0.
2 PP 2[3[/1 BJ (1)

Here over head dot and dash denotes the ordinary differentiation with respect to
t and X respectively.
Using Egs. (8) and (9), the function dependence of the metric is given by

f"
ri = ki, (12)
where k’ is a constant.
If k, =0, then
f)=kyx+ks, (13)

where k, and k, are integrating constants.
Without loss of generality, by taking k,=1 and k£, =0 in Eq. (13), i.e.
f(x)=y, the field Egs. (8) to (11) reduces to

N2 ..

A AB 3, I

[z) F2p T ab TP Pt g (14
A B AB 3 _, I

=t —+ B =—0gps t—— 15
A B AB 4B Pe T g (15)

. - N2
24 (4) 3., I
74‘(2) +zl3 =_(®G+6)pG_ﬁ’ (16)
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. (24 B)_
pR+P (TJFEJ—O- (17)
Some physical parameters are defined as follows:

For axially symmetric space-time the directional and mean Hubble parameters

are defined as

A B
H =H ==, H =—, 1

=H, = 3 (18)

1(24 B
H=—|224Z2].
3(/1 BJ (19)
The spatial volume V is given by

V=A4B. (20)

The scalar expansion 6, shear scalar o, anisotropy parameter A and
deceleration parameter g are defined as

24 B
9=3H=(7+EJ, 1)
2 (&0 2
o =E(;Hi—3H j, (20)
1 & (H-HY
A=§Z;‘(ZTJ , (22)
d(1
q:_HE(Ej' (23)

3. Solutions of field equations. Here we have four linearly independent
equations (14)-(17) and seven variables ( 4, B,B,p,,»Pg> ®g,0), thus the system
is initially undetermined and hence we need three additional conditions to solve
it. In order to solve the field equations completely, we assume the expansion scalar
0 in the model is proportional to shear scalar ¢ (Thorne [68], Katore et al.
[69]), which leads to

A=B", (24)

where n=#1 is a positive constant.
The generalized ghost pilgrim dark energy (Sharif and Nazir [70]) is defined as

po = oy H+op H2) (25)
where 7 is the dimensionless constant.
Subtracting Eq. (16) from Eq. (15), we obtain
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£_£+£ E_ﬁ =9 +L
B A4 A\B 4) PoT ppr (26)
On integrating, we get
. . 21 B 4
b e e 2 (84l
B A4) V '

Following Das et al. [71], we choose integral of the right hand side of Eq. (27)
in such a way that Eq. (27) is integrable. So without loss of generality, we use
the condition

27)

dpg +% = (E—ﬁJ (28)
A° B B 4
Using Egs. (27) and (28), we obtain the expression for metric coefficients as
B=(ee'+ey) ™, (29)
A= (czet +c5 )n/(2n+1) , (30)

where ¢, =c,(2n+1)/(1-n), ¢; =¢,(2n+1) and ¢,, ¢, are constants of integration.
Using Eq. (17), the displacement vector [ is

Bz—( P ) 31)

cye'+cy

where B, is constant of integration.
The expression for the generalized mean Hubble parameter, spatial volume,

anisotropy parameter, shear scalar and deceleration parameter for the model (1)

are respectively given by
!

c,e
H=——"2"——,
3(cze’+ 03) (32)
V=(02 et+c3), (33)
2(n-1)
A= s
2n+1) 4
o = (n— l)2 c; e ’ 33
3(2n+1) (c2 e'+ c3)2 (35)
3c
=1+
q ( ¢ e[J (36)

From Fig.1 it is observed that the displacement vector [ is decreasing function
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of time and tends to a small positive value at late time, which similar with the
result of Halford [54] and with the recent observations [3-6,72] leading to the
conclusion that A is decreasing function of . The anisotropy parameter A is
constant throughout the evolution of the universe and hence given model is

0
0.12
b
0.08
<o} o -2
0.04 3
0 -4 1
0 2 4 6 8 10 0 2 4 6 8 10
t t
Fig.1. The plot of displacement vector 3 Fig.2. The plot of deceleration para-
versus time 7 with ¢,=5, ¢, =25, B, =1. meter g versus time .

anisotropic. The sign of ¢ indicates whether the model inflates or not. The positive
sign indicates decelerating universe whereas negative sign indicates accelerating
universe. From Fig.2 it is found that at initial epoch the deceleration parameter
g is negative and after some finite time it tends to a constant value -1. This
indicates that our universe is accelerating throughout the evolution of the universe.
In our model the value of deceleration parameter is consistent with the observations
of type Ia Supernovae [5,72-74].
Using Egs. (25) and (32), we obtain the energy density of GGPDE as

P o ¢pe’ o, e’ :
G~ .
3(Czet+ 6‘3) 9(cze’+ c3)2 (37)
From Egs. (14) and (37), the energy density of matter is
o, = n(n+ 2)c§e2t ~ 3[33 )

! 2n+ 1)2 (czet+ 03)2 4(026’ " 03)2
! (38)

o e’ o, ce’ ~ )i

3(czet + ‘73) 9(026’ + 03)2 (czet +ey )Z(”“)/(znﬂ)

From Egs. (15) and (37), the EoS parameter of GGPDE is
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S R A R
0g = (@2n+1) (czet+c3)2 (2n+ 1)(czet+ c3) 4(C26t+03)2 (czet+c3)2(”+1)/(2"+1) |
Y
o, Czet " o, cfezz (39)

3(cze’+ 03) 9(cze’+ 03)2
The behaviour of EoS parameter of GGPDE is shown in Fig.3 for different
values of PDE parameter y. It is observed that, the EoS parameter is decreasing
function of time and later on it tends to some constant value. The EoS parameter
is always negative and less than -1. Thus the EoS parameter behaves like phantom

0 — T T =04
=== 7=0.6

AN e y=0.8 i
-.= Without magnetism with y=0.4

0 2 4 6 8 10

Fig.3. The plot of EoS parameter o, versus time # with n=0.5, ¢,=5, ¢,=2.5, I=0,=1.

DE throughout the evolution of universe and goes toward the aggressive phantom
region (o, <<-1) as PDE parameter y increases. Hence EoS parameter of
GGPDE satisfy PDE phenomenon. From figure it is also observed that the EoS
parameter of GGPDE is affected due to magnetism.

From Egs. (16) and (37), the skewness parameter & is

—n(n—1)cye’ 27
§= (2n+ 1)(c2et+c3) (czet+ I )2("+1)/(2”+1)
o, c,e’ e c2e¥ ! “0)

3(cze’+ 03) 9(cze’+ 03)2
The evolution of the skewness parameter & versus cosmic time ¢ with and
without magnetism is shown in Fig.4. The skewness parameter increases as time
increases, after some finite time it attains maximum value and then becomes
constant throughout the evolution of the universe. Also it is observed that the
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Fig.4. The plot of skewness parameter & versus time ¢ with and without magnetism for n=0.5,
¢, =5, ¢=25 B,=1, y=04.

skewness parameter is affected due to magnetic field.
Let 7 be the coincidence parameter and it is defined as 7 =pg;/p,, ie. the
ratio of the DE density parameter and matter energy density parameter. Using

Egs. (37) and (38), the coincidence parameter becomes
t 2 2t
A Ge L 0yce

3(czet +c5 ) 9(czet +c4 )2

(41)

¥
2
n(n+2)cie? 3B a, ce o, cre’ I

2n+1) (cze’ + 03)2 4(czet +o )2 ) 3(czet + c3) : 9(czet +oy )2

(czet +oy )(22(213

Fig.5 shows the variation of coincidence parameter 7 with respect to cosmic
300

200 |

100 |

3 4 5 6 7 8 9 10

Fig.5. The plot of coincidence parameter r versus time ¢ with n =05, ¢,=35, ¢
1=, =1.

=125,

3
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time 7. The coincidence parameter 7 varies at early stage of evolution, but after
some finite time it converges to a constant value and remains constant throughout
the evolution of the universe, thereby avoiding the coincidence problem (unlike
ACDM ).

4. Statefinder parameters {r, s}. In order to get an accurate analysis of
different DE models Sahni et al. [75] has introduced a new geometrical diagnostic
named as statefinder pair {r, s} which is constructed from scale factor a and its
derivative upto third order. The statefinder parameters are defined as follows

_a =1
" T 3(m2) (42)
These parameters allow us to characterize the properties of dark energy. Using
these parameters one can describe the well-known region as (r, s)=(1, 0) indicates
ACDM limit and (r, s) = (1, 1) indicates CDM Ilimit, while s> 0 and r<1
corresponds to region of phantom and quintessence dark energy era.
The statefinder parameters r and s are given by

9¢2 -2¢2
r=l+—=2—, s= 3
cye’ czet(czet+c3) (43)
The relation between r and s is given by
r—1
S oA (44)

9243(—1)

From Fig.6, it is observed that the curve passes through a phase ACDM at
the point (=1, s=0), this implies that at late time cosmic evolution the DE
dominates and drives the cosmic acceleration.

0.2 T T T T T T T T

w 02 ACDM

Fig.6. The plot of statefinder parameter s versus r.
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5. Stability analysis. To find the stability condition of many DE cosmological
models, we use squared speed of sound Uf. A positive value of squared speed of
sound represents a stable model while the negative value indicates the instability
of model. A squared speed of sound Uf is defined as

Ly =—"—. (45)
The squared speed of sound for axially symmetric space-time is given by
_ 3 3 2 2 2 2
2n(n+ 2)cze N 3B, cre N (4n +7n+1)cze

2n+1) (cze’+ o )3 2(026’ + 03)3 2n+1) (czet + 03)2
(n+1)c,e’ 21(n+1)c,e' (46)

ol = ) (2 n+ 1)<czet + 03) ) (2 n+ l)(czet +¢5 )(2(n+l)/(2n+l))+l
s =
a, ce o, cie’ (- 2a, ¢3¢ (201, —3a, )eie? a, ce
3(czet +o ) 9(cze’+ 63)2 9(cze’+ o )3 9(cze’+ 63)2 3(czet +o )

The behaviour of squared speed of sound Uf with respect to time for different
values of PDE parameter is shown in Fig.7. It is observed that in our model the
squared speed of sound remains positive (i.e. Uf > 0), hence our model is stable in
accelerated expanding universe.

FCCLLEEE TR R TR TR TR RN LR RY

Fig.7. The plot of squared speed of sound Uf versus time ¢ with and without magnetism for
n=0.5, ¢,=5, ¢,=25, I=p,=1.

6. Correspondence between the GGPDE and polytropic gas DE
model. The polytropic gas equation of state parameter [76] is defined as
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P =Kpp® (47)
where K is the positive constant and € is the polytropic index.
The energy density of polytropic gas is given by

D0 =(Da¥*— K, (48)

where D> 0 is constant of integration and a is the average scale factor.
Using Egs. (47) and (48), the EoS parameter of polytropic gas is obtained as

3/e
o = P g _ 1 Da

rg P e K— Da3/a ’

(49)

Following Karami [76], if the polytropic gas treating as an ordinary scalar field
then the energy density and pressure of the scalar field are defined as

py =58+ V(1) (50)

2y =%d>2 ~¥(). 1)

Using Egs. (47)-(51), the scalar potential and the kinetic energy terms for the
polytropic gas are given by

L pade_
2

V(g)=—2———+—

(4) ek} (52)
and

. 5 3 Da3/8

(I) B (D 3/8_K)6+1 ' (53)
a

We consider that the GGPDE density is equivalent to the energy density of
polytropic gas. Hence using Egs. (37) and (48), we obtain

¢ 2o )
b, = ace 06 _ (Da3/g—K)_g . 54)
3(cze’+ c3) 9(cze’+ c3)z
Comparing Egs (39) and (49), the EoS parameter is obtain as
n(n+2)cie”  (n+1)cye’
(2n+1) (cze’+ c3)2 (2n+ 1)(czet+ 03)
3% I
4(c2et + c3)z (cze’ + ¢y )Z(’HI)/(MH) Da’®
o = =-1- — (55)
K— Da

o, cye’ o, cre’
3(cze’ + 03) 9(czet+ 03)2
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Solving Egs. (54) and (55), we get

n(n+2)cie” B (n+1)cye’ 3B

2n+1) (cze’ + 03)2 2n+ 1)(cze’ + c3) 4(czet+ 03)2

N 1 N o, c,e’ L% cie’
(cze’ +o )2(n+l)/(2n+l) 3(cze’ + 03) 9(czet+ 03)2

P= v+y/e (36)
(02et+ 3 )1/8 % &€’ 42 cze’
3(C23t+ CS) 9(Czet+ Cs)z

and

nne2)eze®  (melee 3 I
K= (2n+1)? (czel+ c})z (2n+ 1)<Cze’ + 03) 4(cze’+ 03)2 (cze’ +o )Z(n+1)/(2n+l)

- 5 o \HYE : (57)
a, ce o, cre”
+
3(c2e’+c3) 9<Czet+ 03)2

Using the value of D and K in Egs. (52) and (53), we get the kinetic term and
scalar potential as

—n(n+2)cie™ N (n+1)cye’ N 385

V)= 2n+1) (czet + 03)2 (2n+ l)(cze’ + 03) 4(cze’ + 03)2
I oo c e’ L% cre” ' (58)
(cze’ +o )2(n+1)/(2n+1) 3(cze’ + 03) 9(026’ + c3)2 .

6 8 10

Fig.8. The plot of squared speed of sound (i)2 versus time ¢ with n=0.5, ¢,=35, ¢, =25,
I=1, B,=10, y=08.
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and
/2
n(n+2)cie®  (n+l)e,et 35
2n+1) (02 e+ 03)2 2n+ 1)(c2 e+ 03) 4(02 e'+ 03)2
o= St odt. (59)
. 1 e e a,cr e
<6‘2 e+ )2(n+1)/(2n+1) 3(02 e+ 63) 9(02 e+ 63)2

From Fig.8 we observed that ¢> <0 for particular values of B, and y, which
implies that the scalar field ¢ has a phantomic behaviour. This type of potential
can produce an accelerated expansion of the universe. Hence we can establish a
correspondence between the GGPDE and polytropic gas and describe GGPDE
by making use of polytropic gas.

7. Conclusion. In the present work, we have studied the physical and
geometrical behaviour of magnetized and anisotropic GGPDE within the framework
of Lyra's geometry. We have studied some physical aspect of the model in presence
and absence of magnetic field. The deceleration parameter g describes that the
present universe is undergoing an accelerated expansion. It is observed that the
EoS parameter of GGPDE behaves like phantom dark energy throughout the
evolution of universe which satisfies the PDE phenomenon hence it possesses the
ability of prevention of black hole formation [30]. Statefinder diagnostic pair
{r, s} is applied to the model in order to distinguish our DE model with other
existing DE model. For stability analysis, we calculate the squared speed of sound
and found that our model is stable. A correspondence between the GGPDE model
and polytropic gas DE model is established. We have also reconstructed the
potential and dynamics of the polytropic scalar field which shows the accelerated
expansion of the universe.
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[HHLMMMHECKOE_HOgEﬂEHLHﬁpBH&MiHOﬂ
MATHETU3MPOBAHHOU TEMHOMW SHEPI'MA B
I'EOMETPUHN JINPDI

C.A.KATOPE!, 1.B.KATICE?

B pamkax reomeTpuu JIupbl uccienoBaHO OCECMMMETPUUHOE MPOCTPAHCTBO-
BpeMsl ¢ HAMarHM4eHHON aHM30TPOITHOM 00OOIIEHHON CTPAHCTBYIOLIEH MpU3pauyHoii
TeMHOI 3Heprueit (ghost pilgrim). YToObl MTOAYYUTH ONpeaeIcHHOE pellieHNe, MbI
CYUTAJIM, YTO CKJISIpP pacliMpeHus: 6 B MOJEIM MPOMOPLMUOHATIECH CKaISIPHOMY
CABUTY . Mbl OOHApYXWIK, UTO ypaBHEHUE TapaMeTpa COCTOSIHUSI 00001IEHHOM
TEMHOM BSHEPruU CTpaHCTBYIoOLIero mnpuspaka (ghost pilgrim) BemeT cebst Kak
npuspauHasg (phantom) TeMHasl dHeprus. AHaJau3 CTaOUJIBHOCTU TOKa3aj, 4YTO
Halla MOJeJib CTaOWIbHA. MBI U3yYUIU COOTBETCTBUE MEXIY MOIEISIMU OOOOLLIEHHOI
TEMHOM 3HEPruM CTpaHHOro mpuspaka (ghost pilgrim) u TeMHOI1 3HepPTUM MOJIU-
TporHoro raza. CoOTBETCTBEHHO, PEKOHCTPYUPYIOTCS MOTEHLUMaJ M AWHAMUKa
CKaJIIPHOTIO TOJisl MOJUTPOINHOTo raza. Kpome Toro, Mbl paccuMTaliv pa3jiuyHbIe
(uzmyeckre M KMHEMaTUYECKUE TapaMeTpbl MOJEIM UM OOHAPYXWIU, YTO OHM
COBMECTMMBI C HETaBHUMM HAOIIOJCHUSIMU.

KittoueBnbie clioBa: ocecummempuuroe npocmpancmeo-epemsi: 0000ujeHHAas NPU3PaAYHas
CMpancmeyrulas memHas 3Hepeus: eeomempus Jlupol
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