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In the present work, we are proposing a method to build solutions to a general form of the
stationary Kompaneets equation. In the non-relativistic regime, a special attention is given to cases
where the solutions are expressed in terms of Heun functions. A comparison with the results
obtained within a numerical analysis is also briefly discussed.
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1. Introduction. Soon after Kompaneets derived, in 1957, the equation
bearing his name [1], for non-relativistic plasmas, where the Compton scattering
is the dominant process responsible for energy transport, this has become a very
useful tool for modeling fundamental phenomena in modern cosmology and
astrophysics.

In this respect, the frequency distribution of photons provides important
information on various astrophysical environments, as for example intracluster gas,
the coronae of accretion disks around black holes in binary stellar systems and
active galactic nuclei (AGNs), and plasma streams out owing from neutron stars.

Besides detecting and characterizing galaxy clusters, the Sunyaev-Zeldovich
effect [2,3], meaning the distortion of the cosmic microwave background radiation
through inverse Compton scattering by high energy electrons, is of major interest
for constraining cosmological parameters [4-6].

The existence of high-temperature galaxy clusters, with hot electrons of about
kT ~ 20 kEV, has revealed the need to take into account relativistic corrections [7,8]
and generalized forms of the Kompaneets equation have been proposed [9,10].

After Duncan and Thompson introduced the term of magnetar for a type of
neutron star with massively boosted magnetic fields [11], the resonant inverse
Compton scattering (RCS), which occurs when the photon frequency equals the
cyclotron one, has been seen as a main candidate for quiescent nonthermal
gamma-ray emissions. This type of neutron stars have long periods and spin-down
rates and they show a non-atomic Planckian spectrum. The corresponding
Kompaneets equation is similar to the original one, with the difference that the
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frequency-depending RCS cross section must replace the Thomson's one [12].
Even though solutions to the Kompaneets-type equations are found mainly

using numerical simulations, there are stationary cases which can be analytically
solved in terms of Heun functions [13,14].

Let us remind the reader that these functions, introduced more than 100 years
ago, by Karl Heun [15], have been brought to the scientific community attention
at the Centennial Workshop on Heun Equations [16]. In brief, these are unique
local Frobenius solutions to a second-order linear ordinary differential equation
of the Fuchsian type with 4 regular singular points. Once the singularities coalesce,
one gets the confluent Heun functions (with two regular and one irregular
singularities) or the double confluent Heun functions (with two irregular singularities)
[17]. Even though, in the last decade, there is a raising number of articles on
the Heun functions and their applications in theoretical and applied science [18-
21], there are serious gaps in understanding different properties of these functions
and how MAPLE (the only program available) is dealing with their singularities
and is computing the derivatives for specific ranges of the model's parameters. That
is why, most of the people are preferring to rely on numerical methods.

2. A method for generating solutions to stationary Kompaneets-
type equations. Let us start by considering the general equation

   , 1 fnnh
dx
dng  (1)

where the functions g(x), h(x) and f(x) are defined on R+. By dividing the above
relation by 2n  and introducing z = 1/n, one comes to the relations
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the relation (2) leads to the following Master Equation for the function K(x)
depending on the explicit form of the functions g, h and f,
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In the above relations, s is a real-valued integration variable which runs from
any inferior physical value up to the current real value x. Thence, as in the
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mathematical textbooks, the integration variable s is termed as a mute variable,
so that it runs up to the superior value x, which is the true argument of the
resulting function w(x).

This procedure enables us to compute the number of scattered photons as
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For example, let us deal with the famous original form of Kompaneets
equation [1], for describing the evolution of the photon density, in the frequency
space,
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where x is the dimensionless frequency  kThx  , with h  representing the
photon energy and T being the electron temperature, n is the density of photons
in the spectral interval dx, N is the electron number density (assuming homo-
geneous), T  is the Thomson cross section and c is the speed of light.

The above form, proposed by Kompaneets, is describing the so-called up-
Comptonization and occurs in radio and infrared astronomy, where the condition

2mckTh   is satisfied.
In the stationary regime, the equation (5) leads to the following relation
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where the positive constant Q, associated to the photon flux by
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is given by the dimensionless quantity

, 2 TNc
mc
kTQ 

where   is the characteristic time (scattering optical depth). As expected, for
Q = 0, the current j(x) is vanishing and one gets the familiar Bose-Einstein
equilibrium distribution

  . 1
1

 x
BE en (7)

Beginning with the original work of Kompaneets [1], the steady-state equation
(6) has been discussed in numerous papers.

The three terms in the left hand side of (6) are responsible for the following
physical processes: the first term corresponds to the diffusion of photons due to
the Doppler effect and the transfer of energy from electrons to the radiation
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(energy gain with consequent cooling of electrons), the second one stands for the
Compton effect (downward photon flow along the frequency axis) and the third
term accounts for cooling of photons due to induced Compton scatterings.

By comparing (6) with the general equation (1), one may identify the
functions     1 xgxh  and   4xQxf   so that the relations (3) and (4), with
the standard Cauchy conditions for thermal equilibrium, turn into the simple
forms

 24 1  xx Kee
x
Q

dx
dK

(8)

and

    , 1
1

 xKexn (9)

with K(0+) = 1+, for the initial distribution (7).
The relations (3) and (4) for the particular situation presented above can be

analytically solved and K(x) turns out to be expressed in terms of Heun double
confluent functions. Even though the solution of (6), expressed by the Heun
double confluent function and its derivative have been discussed in [13,14], we
underline the fact that it is dificult to operate with this type of functions since
there are unsolved problems related to the normalization procedure and their
derivatives are not converging for physical ranges of the variable and parameters.

In what it concerns the numerical procedure, since the stationary Kompaneets
equation (1) has only one singularity point at x = 0 and is a single-variable ODE,
the explicit Heun method is sufficient to evaluate the solutions. However, one has
to pay attention to: the initial condition n(x0) = n0, the initial point n0 and the
sign and value of Q. The term 4xQ  is very important for fixing the initial
condition. For example, a value 2

0 10x  leads to the huge value QxQ 84 10 .

Fig.1. The effect of different initial conditions n0.
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Also, this complicates the use of normalized units in the numerical procedures,
where Q has integer values, 10Q , 100, 1000. Thus, the value of the term 4xQ
will dictate the value of the first step of the Heun method:

      0000  , xnxfxnxxn~ 

and the process will continue, sending the solution to infinity. For this reason,
it is recommended to make sure the denominator does not drift to higher negative
powers.

In the Fig.1, one may notice the effect of different initial conditions n0, for
different curves, all starting at the same point x0.

3. Heun-type solutions for Kompaneets equation . The equation (6)
presented in the previous section is valid for 2mckTh   and it fails for
describing the down-Comptonization of high energy photons, which is important
in the hard X-ray or  -ray astronomy. Therefore, in the last years, generalized
forms of the original Kompaneets equation have been proposed.

Following Ross et al. [22], let us extend the equation (6) for the physically
important case 2mchkT   by adding the contribution nax 2 , with
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which has been neglected in the previous case, plays a significant role for highly
energetic photons. Thus, one has to deal with the Riccati-type equation
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which, compared to the general form (1), leads to the functions
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Consequently, the relations (3) and (4) turn into the following expressions
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which can be solved by iterations.
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In the particular case Q = 0, the function K is a constant, K = k = const and
the relation (13) is simply given by the expression
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which depends on the electron's temperature.
In the Fig.2, there is a comparison between the numerical solutions of the

equation (6) (termed as "case 1") and the equation (11) (the "case 2"), computed
with the formalism described above. Once Q is increasing, the number of scattered
photons, solutions of (11), is significantly increasing and the distributions get a
prominent maximum at x < 1. One may notice the effect of the 2ax  contribution
on the high frequency photons.

On the other hand, the substitution
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in the equation (11) leads to the following second order differential equation for
the unknown function  ,
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which can be analytically solved. Indeed, its solution is expressed as

      , xHxFx  (18)

Fig.2. Comparison between cases 1 and 2 for different values of Q.
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with
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where C1 and C2 are two integration constants and mHC  are the Heun Confluent
functions [16,17]
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One may easily check that, in terms of the variable (23), the functions (21)
are solutions to the following second-order differential equation
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which is a Heun-type equation satisfied by the Heun Confluent functions of
parameters (22) [16,17]. Obviously, these functions are real for   a real quantity
and this imposes Q < 0 and  241 aQ  . A negative Q means that there is a
constant photon supply at high frequencies ( x ) and a sink at x = 0. One
may notice from

 
 
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1 4 bxx
Qnn
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that, for Q < 0, the solution will always decrease from its initial condition, i.e.

      ...210  xnxnxn
Thus, depending on the initial condition n0, there are cases where the solution
will have negative values (numerically but not physically). However, the drop below
zero slowly converges to zero, due to the -n term which becomes positive and
causes an increase of n, for x .

In the case Q = 0, the particular form of the equation (24) is satisfied by the
hypergeometric functions.

Putting everything together, the photon number density defined in (16) can
be computed as
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The first term in the right hand side of (25) is the negative quantity
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which is competing against the second contribution containing the Heun Confluent
functions (21) and their derivatives. One may impose values for the constants C1

and C2 so that the photon density (25) gets positive (physical) values. For example,
with the particular choice C1 = -C2 > 0, the function n(x) given in (25) is
represented in the Fig.3. As x goes to small values, one may notice in the left
side of the Fig.3, that the function n(x) is rapidly increasing, being limited on
the left by an asymptote which separates the region where the plot goes to
(nonphysical) negative values. For large x values (see the right plot in the Fig.3),
n(x) is approaching a constant non-zero value.

4. General Compton scatterings in non-relativistic regime . For
describing more general Compton scattering processes in the nonrelativistic energy
regime ( 2mch   and 2mckT  ) and with no comparison between h  and
kT, the Kompaneets equation has been generalized to new forms, as for example
the one in [23], i.e.

Fig.3. The photon density (25).
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One may easily check, with MAPLE, that the equation (26) does not lead
to a differential equation satisfied by the Heun functions and therefore we have
to use the general formalism described in the Section 2. Thus, by identifying the
functions
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Qxfbxxhxg 

we get the Bose-Einstein-type distribution
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with K(x) numerically evaluated, using Maple or Mathematica, from the relation
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The numerical solution is represented in the Fig.4, (the "case 3"). One can
compare the distributions corresponding to the three cases analyzed in the present
work, namely the numerical solutions of the equations (6), (11) and (26).

For general Compton scattering processes (case 3), when Q turns into a
positive integer, the lower frequencies are impacted by having a lower photon
number, while for higher frequencies, the distribution in the case 3 is decreasing
to zero, once n approaches a Bose-Einstein-type distribution.

5. Conclusions. The aim of the present work is to discuss different forms

Fig.4. Comparison between the three cases, for different values of Q.
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of the Kompaneets equation, valid in the non-relativistic limit where the typical
photon energy and the plasma temperature are negligibly small compared to the
electron rest energy, 2mc .

Even though Kompaneets-type equations have been solved numerically, there
are a few situations where their stationary forms can be tackled analytically. For
example, the original Kompaneets equation (5), in the stationary regime, turns
into (6), its solution being given by the Heun Double Confluent functions [13,14].
However, there are difficulties in dealing with these functions for physically
important ranges of model's parameters [21].

In the non-relativistic regime, for describing the down-Comptonization of high
energy photons with kTh  , one has to use the equation (11), where the
correction nax 2  is important for situations which take place, for example, during
a supernova explosion [24]. It turns out that the photon density is expressed in
terms of Heun Confluent functions and their derivatives. Because the argument
of the Heun function has a singularity at x = 0, one can expect that, at small
values of x, the solution (25) is more complicated than the conventional Bose-
Einstein spectrum.

Both the up- and down-Comptonization processes (in the non-relativistic
regime) can be described by the equation (26), which doesn't assume any relation
between h  and kT [23]. It is valid for various cases, kTh  , kT~h   and

kTh   and leads to the equation (6) in the low frequency limit. Moreover,
unlike the equation (11), the equation (26) contains the factor  1 nnn  which
ensures the invariance of the total number of photons and the thermal equilibrium
distribution [25]. Indeed, if one imposes the current of the general form

      xnfnxfxj  ,21 

to vanish for steady states, i.e.

  , 1
1

0


 xken
one gets the function f2 of the form

   . 1 ,2  nnxnf
Since the equation (26) does not lead to a Heun-type equation, we have used

the general approach described in the Section 2. As it can be noticed in the Fig.4,
for Q < 0 and low frequencies, the three graphs are rapidly increasing, being limited
on the left by an asymptote (see the Fig.2). Depending on the initial condition
n0, one may have negative (nonphysical) solutions. Once we turn to positive Q
values, the numerical solutions are represented in the right graph of the Fig.4.
For high frequencies, the distributions in the cases 1 and 3 are approaching the
zero value, lying below the curve corresponding to the equation (11) (case 2).

The analysis developed in the present paper can be extended to integrate the
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more general time-depending Kompaneets equation, employing the variables
separation original method proposed by Dubinov and Kitayev [26].
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ÒÎ×ÍÛÅ ÑÒÀÖÈÎÍÀÐÍÛÅ ÐÅØÅÍÈß ÎÁÙÅÃÎ ÂÈÄÀ
ÓÐÀÂÍÅÍÈß ÊÎÌÏÀÍÅÉÖÀ

Ì.À.ÄÀÐÈÅÑÊÓ, ×.ÄÀÐÈÅÑÊÓ, Ã.ÀÌÀÍÎËÎÀÈ

Â íàñòîÿùåé ðàáîòå ìû ïðåäëàãàåì ìåòîä ïîñòðîåíèÿ ðåøåíèé îáùåãî
âèäà ñòàöèîíàðíîãî óðàâíåíèÿ Êîìïàíåéöà. Â íåðåëÿòèâèñòñêîì ðåæèìå
îñîáîå âíèìàíèå óäåëÿåòñÿ ñëó÷àÿì, êîãäà ðåøåíèÿ âûðàæàþòñÿ ÷åðåç ôóíêöèè
Ãîéíà. Êðàòêî îáñóæäàåòñÿ òàêæå ñðàâíåíèå ñ ðåçóëüòàòàìè, ïîëó÷åííûìè â
ðàìêàõ ÷èñëåííîãî àíàëèçà.

Êëþ÷åâûå ñëîâà: óðàâíåíèå Êîìïàíåéöà: ïðîöåññû êîìïòîíèçàöèè: ôóíêöèè
   Ãîéíà
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