УДК 621.382.323

ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ ИОННО-ЧУВСТВИТЕЛЬНОГО ПОЛЕВОГО ТРАНЗИСТОРА НА ОСНОВЕ НАНОПРОВОЛОКИ

А. ЕСАЯН^{1*}, С. ПЕТРОСЯН^{1,2}, А. ПАПИЯН², Ж.-М. САЛЛЕС³

¹Институт радиофизики и электроники НАН Армении, Аштарак, Армения ²Российско–Армянский университет, Ереван, Армения ³Федеральная политехническая школа Лозанны, Лозанна, Швейцария

*e-mail: yesayan.ash@gmail.com

(Поступила в редакцию 19 июля 2021 г.)

В рамках данной работы изучается принцип работы ионно-чувствительного полевого транзистора (ИЧПТ) на основе полупроводниковой нанопроволоки (НП), используемого как pH сенсор. Подробно представлено математическое моделирование физических процессов в структуре. Рассмотрены характеристики ток-pH ИЧПТ от геометрических и физических параметров НП. Представлены графики чувствительности ИЧПТ как финкции от величины pH при различных значениях радиуса НП, толщины оксидного слоя, а также концентрации легирующих примесей в полупроводнике. Полученные результаты качественно совпадают с экспериментальными данными.

1. Введение

Ионно-чувствительные полевые транзисторы (ИЧПТ) широко изучались в качестве биохимических сенсоров в течении последнего десятилетия [1–9]. Чувствительность этих устройств зависит от взаимодействия с транзистором биохимических веществ, заряженные молекулы которых связываются с внешней поверхностью изолятора затвора, исвоим электрическим полем контролируют величину подвижного заряда в проводящем канале полупроводника. В этом отношении устройства с круговым затвором, охватывающим канал со всех сторон, более перспективны, так как они обеспечивают более сильное управление током в канале из-за большого отношения активной поверхности к объему. Значительные усилия исследователей были направлены на уменьшение размеров электрохимических сенсоров до диапазона таких биохимических молекул как антитела и вирусы. И в этом смысле биоэлектрохимические преобразователи на основе НП более привлекательны, поскольку их диаметр (порядка 10–100 нм) примерно равен размеру обнаруживаемых молекул [5–9]. Большое отношение поверхности НП к объёму, особенно при ее малых диаметрах, означает что захват нескольких молекул антител на их поверхности может эффективно модулировать распределение носителей по всему поперечному сечению канала, что и делает эти устройства очень чувствительными сенсорами. Кроме того, уменьшение радиуса нанопроволоки снижает емкость структуры и позволяет сократить время отклика.

Технология изготовления однородно легированных НП является относительно проста, чем и объясняется широкое использование кремниевых НП для биочувствительных измерений (измерения pH, обнаружения белков, вирусов, онкологических маркеровипроцессов репликации ДНК). Созданное новое поколение полевых транзисторов на однородно легированных НП, так называемых полевых транзисторов безпереходов (БП ПТ), признано как настоящее открытие для будущих технологий, поскольку они не имеют p-n- переходов и градиентов легирования для контактов истока и стока [10]. Преимущества таких безпереходных ИЧПТ в различных режимах работы по сравнению с обычными ИЧПТ, работающими в условиях появления и исчезновения инверсионного канала, были экспериментально и численно подтверждены в работах [11–13].

Аналитическая модель дляизучения pH-чувствительности БП ИЧПТ была развита в [14]. Высокая точность этой модели была всесторонне подтверждена мультифизическим моделированием в COMSOL и экспериментальными данными [13]. Целью данной работы является исследование влияния геометрических и физических параметров НП на pH чувствительность НП ИЧПТ.

2. Аналитическая модель для расчета рН чувствительности НП ИЧПТ

Поверхность изоляторов в ИЧПТ оканчивается гидроксильными группами, то есть A-OH (здесь мы рассматриваем оксид SiO₂, поэтому A относится к Si). Эти группы проявляют амфотерное поведение в окислительно-восстановительных реакциях, что означает, что поверхность оксида может заряжаться отрицательно или положительно [15]. Кислотное или щелочное поведение нейтральных связей A-OH в равновесии характеризуется двумя химическими константами K_a и K_b [16].

Плотность заряда, прикрепленного к поверхности раздела оксид/электролит (Q_s), определяется известным уравнением [17]:

$$\ln(10)\left(\mathrm{pH}_{\mathrm{zcp}} - \mathrm{pH}\right) = \left(\frac{\Phi_{ox}}{U_T}\right) + \operatorname{arcsinh}\left(\frac{Q_s}{qN_s\delta}\right) - \ln\left(1 - \frac{Q_s}{qN_s}\right),\tag{1}$$

где Φ_{ox} – падение потенциала внутри электролита, т. е. разность потенциалов между поверхностью оксида/электролита и нейтральным электролитом, N_s – плотность поверхностных состояний, U_T – тепловой потенциал, а pH_{zcp} = $-\log(\sqrt{K_aK_b})$, $\delta = 2\sqrt{K_a/K_b}$. Из выше приведенного уравнения (1) следует, что для каждой системы поверхность/электролит, характеризующейся химическими

константами K_a и K_b (и, следовательно, pH_{zcp}), существует однозначное соответствие между pH в нейтральном электролите и плотностью заряда на границе раздела оксид/электролит. Последний член в правой части(1) можно игнорировать, если $Q_s \ll qN_s$, что является разумным приближением для многих водных растворов [17]. Поэтому в дальнейшем вместо (1) будем использовать более простое уравнение:

$$\ln(10)\left(\mathrm{pH}_{zpc} - \mathrm{pH}\right) = \frac{\Phi_{ox}}{U_T} + \operatorname{arcsinh}\left(\frac{Q_s}{qN_s\delta}\right). \tag{2}$$

Из условия электронейтральности системы имеем

$$Q_s = -Q_{dif} - Q_{sc},\tag{3}$$

где Q_{sc} – плотность объемного заряда в полупроводнике, а Q_{dif} – плотность заряда в диффузном слое электролита в расчете на единицу площади контакта.

В случае полевого транзисторана основе НП мы имеем дело с круговым затвором, что означает, что электролит со всех сторон окружает НП (см. Рис.1). Распределение потенциала в диффузном слое электролита удовлетворяет уравнению Пуассона–Больцмана в цилиндрических координатах. Используя трапецеидальное интегрирование и закон Гаусса в диэлектрической среде, в [14] получено соотношение между плотностью заряда диффузионного слоя электролита (Q_{dif}) ипотенциала на внешнем слое Гельмгольца по отношению к нейтральному электролиту(Φ_{el}):

$$Q_{dif} = 2 \varepsilon_1 \varepsilon_0 \frac{U_T}{l_D^*} \sinh\left(\frac{\Phi_{el}}{2U_T}\right),\tag{4}$$

где $l_D^* = l_D \sqrt{(R^* + \nu l_D)/R^*}$, ε_1 -относительная диэлектрическая проницаемость электролита, $R^* = R + t_{ox} + d$, где R – радиус полупроводниковой НП, t_{ox} толщина оксидного слоя, d – толщина изолирующего слоя Штерна, (обычно около

Рис.1. Схематический вид четверти поперечного сечения системы.

0.5 нм), ε_0 – электрическая постоянная. Величина (νl_D) есть толщина диффузного слоя, где ν -целое число (в наших расчетах $\nu = 3$), а $l_D = (\varepsilon_1 \varepsilon_0 U_T / 2qn_o)^{1/2}$ есть длина экранирования Дебая в электролите.

Заметим, что соотношение (4), полученное для цилиндрической геометрии, имеет ту же форму, что и аналогичное соотношение, полученное для плоской структуры, но теперь l_D заменено на l_D^* , которая включает в себе радиус R^* (см. Рис.1).

Когда падение потенциала в электролите Φ_{el} меньше, чем $2U_T$, функция sh может быть линеаризована разложением в ряд Тейлора, поэтому соотношение (4) упрощается до линейной зависимости,

$$Q_{dif} = C_d \Phi_{el},\tag{5}$$

где C_d определяет емкость диффузионного слоя в расчете на единицу площади, $C_d = \varepsilon_1 \varepsilon_0 / l_D$. Электростатическая теорема Гаусса в диэлектрической среде связывает плотность заряда диффузионного слоя электролита (Q_{dif}) и поток электрического смещения через единицу внешней цилиндрической поверхности слоя Гельмгольца:

$$\left.-\varepsilon_{1}\varepsilon_{o}\frac{\partial\varphi_{el}(r)}{\partial r}\right|_{r=R^{*+}}=Q_{dif}$$

Следовательно

$$C_{\text{Stern}}(\Phi_{ox} - \Phi_{el}) = Q_{dif}, \tag{6}$$

где $C_{\text{Stern}} = \varepsilon_2 \varepsilon_0 / d^*$ есть емкость слоя Штерна с относительной диэлектрической проницаемостью ε_2 в расчете на единицу площади, причем для цилиндрической геометрии $d^* = (R + t_{ox})\ln(1 + d/(R + t_{ox}))$. Объединяя (5) и (6), мы видим, что потенциал Φ_{ox} , становится пропорциональным плотности заряда в диффузном слое

$$Q_{dif} = C_{eff} \Phi_{ox},\tag{7}$$

где $C_{eff} = C_d C_{Stern} / (C_{Stern} + C_d)$, представляет собой последовательную комбинацию емкостей, обусловленных слоями Штерна и диффузии. Следовательно, для данного Φ_{ox} известны как плотность заряда в диффузионном слое, так и заряд, захваченный на поверхностьоксида. Это означает, что исходя из условия электронейтальности (3). заряд в полупроводнике также известен.

Подставляя (3) и (7) в уравнение (2), окончательно можно получить в неявном виде зависимость Φ_{ox} от pH:

$$\ln(10)\left(\mathrm{pH}_{zpc} - \mathrm{pH}\right) = \frac{\Phi_{ox}}{U_T} + \operatorname{arcsinh}\left(\frac{\mathcal{C}_{eff}\Phi_{ox} - Q_{sc}}{qN_s\delta}\right).$$
(8)

Мы уже отмечали, что полевой транзистор на основе однородно легированной НП можно рассматривать как безпереходный транзистор. Ссылаясь на

модель БП транзистора, разработанную в [18,19], для плотности заряда в НП можно записать выражение, связывающее заряд в полупроводнике с поверхностным потенциалом:

$$Q_{sc} = 2 \operatorname{sign}(\psi_o - \psi_s) \times \left\{ q \varepsilon_{sc} \varepsilon_0 n_i U_T \left[\exp\left(\frac{\psi_s - V}{U_T}\right) - \exp\left(\frac{\psi_0 - V}{U_T}\right) - \frac{N_D}{n_i} \left(\frac{\psi_s - \psi_0}{U_T}\right) \right] \right\}^{1/2}$$
(9)

где

$$\psi_s = \frac{qR^2}{4\varepsilon_0\varepsilon_{sc}} \left(n_i \exp\left(\frac{\psi_0 - V}{U_T}\right) - N_D \right) + \psi_0, \tag{10}$$

 ε_{sc} -диэлектрическая проницаемость полупроводника, *V*-электрохимический потенциал канала (сдвиг квазиуровня Ферми), ψ_s , ψ_0 -потенциалы на поверхности и в центре полупроводниковой НП, соответственно.

В случае ИЧПТ потенциал, контролирующий канал это потенциал на границе раздела оксид/электролит. Мы обозначим этот потенциал как потенциал затвора Φ_G . Со стороны электролита Φ_G является суммой эффективного напряжения на электроде (V_g^*) и падения потенциала в электролите: $\Phi_G = V_g^* + \Phi_{ox}$, а со стороны полупроводника: $\Phi_G = -Q_{sc}/C_{ox} + \psi_s$, где C_{ox} есть емкость на единицу площади оксидного слоя. Отсюда следует, что Φ_{ox} является также функцией заряда полупроводника и поверхностного потенциала (ψ_s):

$$\Phi_{ox} = -\frac{Q_{sc}}{C_{ox}} + \psi_s - V_g^*.$$
⁽¹¹⁾

Следует отметить, что после подстановки (9) и (10) в (11), Φ_{ox} также становится функцией центрального потенциала в полупроводниковом канале ψ_0 . Для ясности отметим, что Φ_{ox} определен относительно нейтрального электролита, тогда как Φ_G определен относительно собственного уровня Ферми, как и ψ_0 и ψ_s .

Таким образом, подставляя уравнения (9)–(11) в (8), мы можем самосогласованно вычислить зависимость центрального потенциала ψ_0 , от величины pH в электролите. Как только из (8) определяется ψ_0 , заряд полупроводника и поверхностный потенциал могут быть вычислены на основе уравнений (9) и (10), соответственно, а Φ_{ox} – из уравнения (11). Так как Φ_{ox} определяет также Φ_G , то соответственно для данного pH будет найдено единственное значение Φ_G . Заменяя в явных выражениях вольт-амперных характеристик БП транзистора [20] напряжение на затворе (V_g) на Φ_G (pH), мы получим зависимость тока ИЧПТ от величины pH. Уравнения для вычисления тока стока НП ИЧПТ приведены в Приложении данной статьи.

3. Анализ зависимости чувствительности ИЧПТ от параметров НП

Пользуясь приведенной выше моделью мы провели анализ зависимости чувствительности НП ИЧПТ от параметров нанопроволоки. Во всех вычислениях, если неоговорено специально, были приняты следующие характерные значения величин: радиус НП R = 20 нм; толщина оксидного слоя $t_{ox} = 2$ нм; концентрация легирующих доноров НП $N_D = 5 \cdot 10^{18}$ см⁻³, напряжение на электроде, по-груженном в электролит, устанавливается равным нулю ($V_g^*=0$).

Рис. 2 показывает зависимость управляющего потенциала Φ_G от *pH* при различных толщинах оксидного слоя (от 2 нм до 4 нм). На графике, пунктирной линией показана зависимость управляющего потенциала (Φ_{Gw}), рассчитанного из уравнении (8), пренебрегая зарядом (Q_{sc}) внутри полупроводника. Видно, что потенциал Φ_{Gw} обращается в нуль, когда pH = pH_{zpc} = 2, что является точкой нулевого заряда слоя диоксида кремния. В случае же, когда при расчетах управляющего потенциала учитывается Q_{sc} , точка нулевого заряда смещается (pH_{zpc} =3.4–4). Отсюда следует, что заряд внутри полупроводника влияет на распределение зарядов, как на поверхности оксида, так и в диффузионном слое электролита и важность самосогласованных расчетов очевидна.

Рис.2. Зависимость управляющего потенциала Φ_G от pH, при различных толщинах оксидного слоя: (1) 2 нм, (2) 3 нм, (3) 4 нм, а также (4) Φ_{GW} при t_{ox} =2нм.

Видно также, что скорость изменения поверхностного потенциала при pH > pH_{zpc} составляет 50 мB/pH, что с погрешностью в 1мB совпадает с данными, представленными в [13], где проведено измерение pH в подпороговом режиме с помощью НП БП ИЧПТ.

Из представленных на рис.2 графиков, можно прийти к выводу, что максимальная чувствительность поверхностного потенциала наблюдается при малых толщинах оксидного слоя.

Рис.3 показывает количественное изменение тока ИЧПТ в зависимости от величины pH, при различных значениях толщины оксидного слоя t_{ox} . На вертикальной оси показано отношение тока ИЧПТ к току БПТ (беспереходного полевого транзистора с нулевым напряжением на металлическом затворе). Видно, что с увеличением толщины оксидного слоя (t_{ox}) изменение тока в зависимости

Рис.3. Изменение тока ИЧПТ от pH, при различных значениях толщины оксидного слоя: (1) 2 нм, (2) 4 нм, (3) 6 нм, (4) 8 нм.

Рис.4. Изменение тока ИЧПТ относительно pH, при различных значениях концентрации легирующих примесей: (1) 2×10^{18} см⁻³, (2) 4×10^{18} см³, (3) 8×10^{18} см⁻³, (4) 1×10^{19} см⁻³.

от pH практически отсутствует, следовательно, при изготовлении ИЧПТ толщину оксидного слоя нужно выбрать наименьшую с точки зрения возможности технологии. Следует отметить, что при малых значениях pH (кислая среда) зависимость чувствительности от толщины оксидного слоя ослабляется.

На рис.4 представлено относительное изменения тока ИЧПТ от величины pH, при различных уровнях легирования НП. Видно, что с повышением концентрации легирующих примесей в НП изменение тока с ростом pH ослабевает, т.е. чувствительность снижается при повышении уровня легирования.

Рис.5. Изменение тока ИЧПТ относительно рН, при различных значениях радиуса НП: (1) 8 нм, (2) 25 нм, (3) 50 нм.

Рис. 5 показывает относительное изменение тока ИЧПТ от pH, при различных значениях радиуса НП R_{NW} . Видно, что при больших радиусах НП изменение тока в зависимости от pH почти отсутствует, т.е. в этом случае эффективность ИЧПТ падает. Другими словами, при больших значениях радиуса нанопроволоки, ИЧПТ теряет свои свойства как детектора pH. Это объясняется тем, что в нанопроволоках с большим радиусом проводимость канала больше не контролируется поверхностным потенциалом. Видно, что максимальная чувствительность достигается для НП с радиусом менее 25нм.

Таким образом, с помощью представленной модели мы рассмотрели зависимость чувствительности НП ИЧПТ от параметров НП, с целью нахождения наилучшего набора параметров для оптимизации структуры биосенсора. Приведенные выше выводы могут в дальнейшем служить руководством при разработке и производстве датчиков рН на нанопроволоках.

Приложение

Согласно [18] уравнения тока стока БП транзистора можно разделить на составляющие: ток в режиме истощении (I_{Dep}), ток в режиме накоплении (I_{AM}) и ток в гибридном режиме ($I_{Dep} + I_{AM}$)

$$I_{\text{Total}} = \begin{vmatrix} I_{\text{Dep}} & \text{если,} & \Phi_G(\text{pH}) - V_{\text{s}} \leq V_{\text{FB}} \\ & \text{или} \\ I_{\text{AM}} + I_{\text{Dep}} & \text{если,} & \Phi_G(\text{pH}) - V_{\text{d}} \leq V_{\text{FB}}, \\ & \text{или} I_{\text{AM}} \end{vmatrix}$$
(П.1)

где $V_{\rm FB} = U_T \cdot \ln(N_D/n_i)$ потенциал плоских зон в полупроводнике. Выражения для $I_{\rm AM}$ и $I_{\rm Dep}$ приведены, соответственно, в [18] и [20]:

$$I_{AM} = \frac{\pi R}{L} \mu \begin{cases} Q_d \cdot (V_d - V_s) - \frac{1}{4C_{ox}} Q_{Acc}^2 \Big|_{V_s}^{V_d} + \\ + 2 U_T \left(Q_{Acc} - \sqrt{8Q_d C_{si} U_T} \cdot \operatorname{arctg} \left(\frac{Q_{Acc}}{\sqrt{8Q_d C_{si} U_T}} \right) \right) \Big|_{V_s}^{V_d} \end{cases}, \qquad (\Pi.2)$$

$$I_{Dep} = \frac{\pi R}{L} \mu \begin{cases} \left(\frac{1}{8C_{si}} - \frac{1}{4C_{ox}} \right) Q_{dep}^2 \Big|_{V_s}^{V_d} - \frac{1}{12Q_d C_{si}} Q_{dep}^3 \Big|_{V_s}^{V_d} + \\ + \left(\frac{Q_d}{2C_{ox}} + 2 U_T \right) Q_{dep} \Big|_{V_s}^{V_d} - U_T Q_d \ln \left(1 + \frac{Q_{dep}}{Q_d} \right)^2 \Big|_{V_s}^{V_d} \end{cases}, \qquad (\Pi.3)$$

где $Q_d = qN_DR$ плотность неподвижного заряда НП при полном истощении, Q_{dep} и Q_{Acc} -плотности неподвижного заряда канала в режимах истощения и обогащения, соответственно привиденные в явных выражениях в работе [20]. Чтобы использовать эти уравнения в модели ИЧПТ мы должны заменить V_g^* на Φ_G (pH), аналогично тому как уже поступили при выводе выражения тока (П.1). Соответственно, зависимость плотности заряда от pH в режиме истощения будет:

$$Q_{Dep} = -Q_D C_n + Q_D^* \sqrt{1 - \frac{8Q_D C_{Si} U_T}{{Q_D^*}^2} \ln\left(1 + \exp\frac{\Phi_G(pH) - V - V_T + f_{Sm} \cdot V_\delta}{U_T}\right)}, \quad (\Pi.4)$$

где $f_{\rm sm} = \frac{1}{2} - \frac{1}{2} \tanh(0.2 \ (\Phi_G(\text{pH}) - V - V_{\rm T})/U_{\rm T}) - функция сглаживания, V_{\rm T} = V_{\rm FB} - Q_{\rm D} \left(\frac{1}{8C_{\rm Si}} + \frac{1}{2C_{\rm ox}}\right), C_{\rm n} = 2C_{\rm Si}/C_{\rm ox}, Q_{\rm D}^* = Q_{\rm D}(1 + C_{\rm n})$ и $V_{\delta} = U_{\rm T} \ln\left(\frac{Q_{\rm D}^*}{8C_{\rm Si}U_{\rm T}}\right)$. Плотность заряда в режиме накопления имеет следующий вид:

$$Q_{Acc} = 2C_{ox}V_{AM} \left(1 - \sqrt{1 + \left(\frac{\Phi_G(pH) - V - V_{FB}}{V_{AM}}\right)^2}\right), \tag{II.5}$$

где

$$V_{\rm AM} = U_{\rm T} \ln \left[1 + \frac{2C_{\rm ox}^2 U_{\rm T}}{Q_{\rm D} C_{\rm Si}} \cdot \left(\ln \left[1 + \exp \left(\frac{\Phi_G(\rm pH) - V - V_{\rm FB}}{2U_{\rm T}} \right) \right] \right)^2 \right].$$

Подставляя уравнения (П.5) и (П.4) соответственно в (П.2), (П.3) и далее в (П.1), получим зависимости ток –рН для НП ИЧПТ.

ЛИТЕРАТУРА

- 1. C. Duarte-Guevara, F.-L. Lai, Ch.-W. Cheng, et al. Anal. Chem., 86, 8359, (2014).
- 2. S. Dzyadevych, A. Soldatkin, A. El'skaya, et al. Anal. Chim. Acta, 568, 248 (2006).
- D. Landheer, G. Aers, W. McKinnon, M. Deen, J.Ranuarez. J. Appl. Phys., 98, 044701 (2005).
- 4. N. Moser, T. Lande, C. Toumazou, P. Georgiou. IEEE Sens. J., 16, 649 (2016).
- 5. O. Knopfmacher, A. Tarasov, W. Fu, M. Wipf, B. Niesen, M. Calame, C. Schonenberger. Nano Lett., 10, 2268 (2010).
- 6. M. Noor, U. Krull. Anal. Chim. Acta, 825, 1 (2014).
- 7. F. Patolsky, C.M. Lieber. Mater. Today, 8, 20 (2005).
- 8. E. Stern, J. Klemic, D. Routenberg, et al. Nature, 445, 519 (2007).

- G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, C.M. Lieber. Nat. Biotechnol., 23, 1294 (2005).
- 10. J. Colinge C.W. Lee, A. Afzalian, et al. Nat. Nanotechnol., 5, 225 (2010).
- 11. E. Buitrago, G. Fagas, M. Badia, Y. Georgiev, M. Berthomé, A. Ionescu. Sensors Actuators, B Chem., 183, 1 (2013).
- 12. R. Narang, M. Saxena, M. Gupta. IEEE Trans. Electron Devices, 64, 1742 (2017).
- 13. C. Chen, R. Lin, L. Chiang, F. Pan, J. Sheu. Jpn. J. Appl. Phys., 58, 027001 (2019).
- 14. A. Yesayan, F. Jazaeri, J.M. Sallese. IEEE Trans. Electron Devices, 67, 1157 (2020).
- 15. T.W. Healy, D.E. Yates, S. Levine. J. Chem. Soc. Faraday Trans., 70, 1807 (1974).
- 16. R.E.G. van Hal, J.C.T. Eijkel, P. Bergveld. Sensors Actuators B. Chem., 24, 201 (1995).
- 17. L. Bousse, N.F. De Rood, P. Bergveld. IEEE Trans. Electron Devices, 30, 1263 (1983).
- J.M. Sallese, N. Chevillon, C. Lallement, B. Iñiguez, F. Prégaldiny. Trans. Electron Devices, 58, 2628 (2011).
- 19. J.M. Sallese, F. Jazaeri, L. Barbut, et al. IEEE Trans. Electron Devices, 60, 4277 (2013).
- 20. A. Yesayan, F. Prégaldiny, J.M. Sallese. Solid. State. Electron., 89, 134 (2013).

ՆԱՆՈԼԱՐԱՅԻՆ ԻՈՆԱՉԳԱՅՈՒՆ ԴԱՇՏԱՅԻՆ ՏՐԱՆՉԻՍՏՈՐԻ ՏԵՍԱԿԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆ

Ա. ԵՍԱՅԱՆ, Ս. ՊԵՏՐՈՍՅԱՆ, Ա. ՊԱՊԻՅԱՆ, Ժ-Մ. ՍԱԼԼԵՍ

Աշխատանքի շրջանակներում ուսումնասիրվել է կիսահաղորդչային նանոլարի (ՆԼ) վրա հիմնված իոնազգայուն դաշտային տրանզիստորի (ԻԶԴՏ) գործունեության սկզբունքը, որը կարող է օգտագործվել է որպես pH սենսոր։ Մանրամասնորեն ներկայացված է կառուցվածքում ֆիզիկական գործընթացների մաթեմատիկական մոդելավորումը և ստացված են նման տրանզիստորի բնութագրերի կախվածությունները ՆԼ-ի երկրաչափական և ֆիզիկական պարամետրերից։ Ներկայացված են ԻԶԴՏ-ի զգայունության կախվածությունները pH ի մեծությունից՝ օքսիդի շերտի հաստության, ՆԼ շառավղի և կիսահաղորդչում խառնուրդների կոնցենտրացիայի տարբեր արժեքների համար։ Ստացված արդյունքները որակական համաձայնության մեջ են փորձարարական տվյալների հետ։

THEORETICAL STUDIES OF NANOWIRE ION-SENSITIVE FIELD EFFECT TRANSISOR

A. YESAYAN, S. PETROSYAN, A. PAPIYAN, J-M. SALLESE

The operation principle of a semiconductor nanowire (NW) ion-sensitive fieldeffect transistor (ISFET), denoted for pH sensing, is studied within the framework of this work. The physical processes in the system are mathematically modelled and presented in details. The dependences of the NW ISFET current-pH characteristics on NW geometrical and physical parameters are analyzed. The plots of the ISFET sensitivity versus pH at different NW radii, the thicknesses of the oxide layer, and the NW doping densities are presented. The obtained results are in qualitative agreement with the experimental data.