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We investigate some cosmological models where the effective potential K($) may become 
negative for some values of field o. Cosmological evolution in models with a minimum at K($) < 0 
is similar in some respects to the evolution in models with potentials unbounded from below. In 
this case instead of reaching an AdS regime dominated by the negative vacuum energy, the universe 
may reach a turning point where it's energy density vanishes, and then it contract to a singularity. 
In some cases such models may lead to a bounce.
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1. Introduction. Since the invention of inflationary cosmology, the theory 
of evolution of scalar fields in an expanding universe has been investigated quite 
extensively, both at classical level and quantum level [1-3]. While many features 
of the scalar field cosmology are well understood, the over-all picture remains 
somewhat incomplete. Felder ct al. [4] have extended the investigation of scalar 
field cosmology to models with negative potentials of the form P($)= Ko+ m2 /1 

(Chaotic Inflation). In this paper, we will study the problem of cosmological 
models with negative potentials for other forms of the potential /($).

There arc several reasons to study cosmology with negative potentials. The first 
reason is related to the cosmological constant problem. In inflationary cosmology, 
we can choose [1,5]: P($)= F0+nr2 $*/2, Ko is a small cosmological constant. 

With K0>0, it leads to an expanding universe leading to de Sitter-like state. Why 
K, be so small and positive? What will happen when V9 < 0? After a long stage 
of inflation the universe with Vo<0 docs approach an AdS regime; instead of that 
it collapses [6]. In [4] the author have studied cosmological behaviour in a large 
class of the theories with negative potentials and explained why the universe in 
these theories stops expanding and eventually collapses (Refer also [7]).

Another reason to study theories with negative potentials is provided by 
cosmology in gauged super-gravity. It has been found that in all known versions 
of these theories, potentials with extrema of K($)>0 are unbounded from below. 
Despite this fact, such models can, under certain conditions, describe the present 
stage of acceleration of the universe [6,8].
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One more reason is related to a formal connection with warp factor/bulk scalar 
dynamics in Brane Cosmology. It has been shown that the equations for the warp 
factor and scalar field in brane cosmology with a scalar field potential are 
similar to the equations for the scale factor and scalar field in 4/J cosmology with 
negative potentials - K($) [9]. Thus there is an interesting relation between 
negative potentials and warped geometry with positive potentials.

Finally, cosmology with negative potentials /($) is the basis of cyclic universe 
model [10] based in part on the Ekpyrotic scenario [11]. However, the authors 
of [10] assumed that the scalar field k($) at large <|i is positive and nearly 
constant. As a result, the universe experiences a super-luminal expansion (infla­
tion) that helps to solve some of the cosmological problems.

The idea that the big-bang is not the beginning of the universe but a point 
of a phase transition is quite interesting [12-16]. Since the idea of the cyclic 
scenario docs require repeated periods of the inflation anyway, it will be nice to 
avoid the vulnerability of this scenario with respect to the unknown physics at 
the singularity.

In this paper, we undertake a study of scalar field cosmology with negative 
potentials for certain forms of K($) used in inflationary cosmology [1-3]. We can 

describe several regimes that arc possible in scalar field cosmology: the universe 
can be dominated by potential energy, by kinetic energy, by energy density of 
an oscillating scalar field, or by matter and radiation. We investigate the models 
for certain choices of /($) and discuss their evolution. In some models with 
*,(♦)< 0, there is expansion i.e. /f =a/a>0 and then //<0 (contraction), so 
there is a turn around. In some cases, there may be possibility of a bounce.

The above conclusion can be altered if an account of quantum effects, 
including particle production near singularity, is taken into consideration.

2. Cosmological Models. We take the FRW metric

=rfl’--a(<)2^pp- + r։(<feI +sinIed<>!)j (1)

where fc=+l, 0, -1 and a(r) is the scale factor. For the perfect fluid, energy­
momentum tensor is given by

r։=(p + p)“,“y-₽8։. (2)

We take the equation of state as
P = YP- (3)

The Friedmann equation is

(4)
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Also

|G>+/>) <5>
^--l(p + 3p). (6)

The Eqs. (4), (5) and (6) can be written as

tf-4=-|(*I+Mi+ir)) (8)
a l

« (l+3r)). (9)
a J o

Here, we have assumed 8nC-c-l in proper unit. The evolution of scalar 
field 4> is given by equation

♦+3"*+^r=0 (10)

where ^ = d<fldt.
We will study four regimes respectively: (i) Universe is dominated by /($), 

(ii) Universe is dominated by kinetic energy density if2/2, (iii) The regime when 
F(^)«iz/2, (*v) Universe is dominated by matter/ radiation pT.

Now we consider these regimes for different choices of potential r(<>) [1-3].

2.1. Section A. We consider

♦֊♦* (11)

where kjsl. We have 7'(4i)=0 at 0 = 0, | = ±m/Vx . At 0 = 0, potential function 
has point of maxima and at 0 = ±m/Vx , there is point of minima.

2.1.1. The energy density is dominated by P(|). In this regime, we 
have i2/2«K(|), pT «/(♦) and |^«|3/f^. Thus, by p = 02/2-F'(|) and 
P=i72^(«). we have

p + p = 0. • (12)
For flat FRW case and under the condition |$4[»|2m2$’|>|K0|, from eqs. (7) 

and (10), we have

(13)

3tf0-m24> + X|J=O. (14)

Using Eqs. (13) and (14), we have
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where f9 is an integration constant. Thus, for large t, .
From Eqs. (13) and (15), we obtain the relation

««>

For large l, cxp(m2/4\2).).

The behaviour of scalar field 0 with cosmic time i for the ease 2.1.1, where 
the energy density is dominated by /(0) can be seen in Fig.l, 2. Here, we 

consider some physically significant values of Xsl, i.e. X = 0.95, 0.75, and 0.5. 
From Fig.l, it is observed that for all given choices of X, the scalar field 0 
is an increasing function of cosmic time t, if we consider the positive sign in 
the RHS of equation (15). The rapidity of growth of scalar field is observed at

Hg.1. The scalar field 0 with cosmic time t for m- 1, (,'Q in positive part of Eq. (15).

Fig-2. The same as in Fig.l for negative part of Eq. (15).
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an early stage. Later on. this tends asymptotically to a constant for large time 
t. From Fig.2, it is observed that the scalar field <$> is decreasing function of 
cosmic time r, if we consider the negative sign in the RHS of equation (15). The 
rapidity of decay of scalar field is observed at an early stage. Later on. this tends 
asymptotically to a constant for large time t.

The behaviour of scalar factor o(r) with cosmic time t for the ease 2.1.1, where 
the energy density is dominated by can be seen in Fig.3. From Fig.3, it 
is noticed that for all given choices of X, the scalar factor a is decreasing function 
of cosmic time t. The rapidity of decay of scalar factor is observed at an early 
stage. Later on, this tends asymptotically to a constant for large time t, for all 
above choices of X.

Fi*.3. The scale factor «(/) with cosmic time f for m” 1, 1,-0 in Eq. (16).

2.1.2. The energy density is dominated by $2/2. In this regime, we 
have r(*)«i72. P, «*'/2 and Thus,
by p-b:/2~T(b) and p = ^:/2 + K(0), we have

P=P- (17)

From Eqs. (7) and (10), we have

<“>
*+3tf*=0. (19)'

From Eqs. (18) and (19). we have

(20)

(21)
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Also, in other form,

(22) '

♦ = *»+(23)

where a0, f, are the constants of integration.
The behaviour of scalar factor a(f) with cosmic time / for the case 2.1.2, where 

the energy density is dominated by if/l can be seen in Fig.4. From Fig.4, it 

is observed that the scalar factor a is an increasing function of cosmic time t. 
The rapidity of growth of scalar factor is observed at an early stage, l^ater on, 
this tends asymptotically to a constant for large time t.

The behaviour of scalar field $(r) with cosmic time t for the case 2.1.2, where 
the energy density is dominated by. $2/2 can be seen in Fig.5. Here, we consider 
some physically significant values of i.e. r։ = 1, 0.5, and 0.25. From Fig.5,

Hg.5. The scalar field $ with cosmic time t for 0, -1 in positive part of Eq. (23).
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Fig 6. The same as in Fig-5 for negative part of Eq. (23).

it is observed that for all given choices of r|t the scalar Geld $ is a decreasing 
function of cosmic time t, if we consider the positive sign in the RHS of Eq. 
(23). From above Fig.5, it is also noticed that, for large time t, the scalar Geld 
$ becomes a constant. From Fig.6, it is observed that the scalar Geld $ is an 
increasing function of cosmic time t, if we consider the negative sign in the RHS 
of Eq. (23). From above Fig.6, it is also noticed that, for large time t, the scalar 
Geld <։ becomes a constant.

2.1.3. The regime when In this regime, we neglect 3ff$,
then from Eq. (10), we have

Ftg.7. The scalar Geld q with cosmic time t for m “ I in Eq. (26).
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In other form. $(/) can be written as

The behaviour of scalar field <$> with cosmic time t for the ease 2.1.3, where 
can bc secn *n Here, we consider some physically significant 

values of Xsl, i.c. X = 0.95,0.5, and 0.25 and m=* 1. From Hg.7, it is observed 
that for all given choices of X, the scalar field $ is an increasing function of 
cosmic time I. From above Fig.7, it is also noticed that, for large time I, the 
scalar field is independent on X.

2.1.4. Evolution of universe by energy density of matter/radiation 
p . In this regime, energy density of the universe is dominated by matter with 
equation of state py = ypT. The cosmological evolution is in the form, (1]

֊■4?r (27)

r -]W(Mo(,)-4d
(28)

(29)

(30)

2.2. Section B. We consider 
rto-4։-֊  ̂ (3i)

where n > 1 and M is a positive constant.

2.2.1. The energy density is dominated by K($). In this regime, we 
have i2/2«K(4), py«/($) and . Thus, by p = 4։/2-K(^) and
p = 42/2 + K($), we have

p + p = 0. (32)

For flat FRW case from Eqs. (7) and (31), we have 

Im(. ex']

""M <33)
From Eqs. (10) and (33), we have

J#1 -ad<f> = ֊J ^-andt. (34)
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For n = 4, wc have

(35)

where, tj is an integration constant.
For above value of , wc have

The behaviour of scalar field <։ with cosmic time t for the case 2.2.1, where 
the energy density is dominated by K($) can be seen in Fig.8, 9. Here, we 
consider some physically significant values of a , i.c. a = 2.5, 1.0, and 0.5. From 
Fig.8, it is observed that for all given choices of a , the scalar field $ is an 
increasing function of cosmic time /, if we consider the positive sign in the RHS 
of Eq. (35). The rapidity of growth of scalar field is observed at an early stage. 
Later on, this tends asymptotically to a constant for large time t. From Fig.9, 
it is observed that the scalar field $ is a decreasing function of cosmic time t.

Fig-9. The The same as in Fig.8 for negative pan of Eq. (35).
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Fig.10. The scale factor of/) with cosmic time t for m- 1, Z,-0 in Eq. (36).

if we consider the negative sign in the RHS of Eq. (35). The rapidity of decay 
of scalar field is observed at an early stage. Later on, this tends to asymptotically 
to a constant for large time t.

The behaviour of scalar factor a with cosmic time t for the case 2.2.1, where 
the energy density is dominated by /(o) can be seen in Fig.10. From Fig.10, 
it is noticed that for all given choices of a , the scalar factor a is an increasing 
function of cosmic time t. The rapidity of growth of scalar factor is observed 
throughout the evolution of the universe.

2.2.2. The energy density is dominated by 02/2. Since energy density 

is dominated by kinetic energy density and there is no role of potential function 
/(|). Therefore, this case is similar to the section 2.1.2.

2.2.3. The regime when K(|)«02/2. In this regime, we neglect 3//$, 

then from Eq. (10), we have

(37)

(38)

(39)

From Eqs. (31) and (37), we have

^(-a^pA'-G)91'-21 

where f, is an integration constant and for n = 4, we have

The behaviour of scalar field with cosmic time t for the case 2.2.3, where 
the energy density is dominated by /($)<• $J/2 can be seen in Fig. 11. Here, we 

consider some physically significant values of a , i.e. a = 2.5, 1.0, and 0.5. From 
Fig. 11, it is observed that for all given choices of a , the scalar field 0 is an 
increasing function of cosmic time t. The rapidity of growth of scalar field is
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Fig.ll. The scalar field » with cosmic time t for m " 1, t, " 0 in Eq. (39).

observed at an early stage. Later on, էհե tends asymptotically to a constant for 
large time t.

2.2.4. Evolution of universe by energy density of matter/radiation 
pT. In էհե regime, energy density of the universe is dominated by matter with 
equation of state =ypT- Tins section ե similar to the 2.1.4.

2.3. Section C. We consider

• C0)

2.3.1. The energy density is dominated by P($). In էհե regime, we 
have Փ2/2«^(փ), PT«^) and H<<|3-w^- Thus> by P = *2/2“,'W and 
p = ^/2 + V^). we have

p + p = 0. (41)
For flat FRW case with conditions |F0|«(|* -m2)*, from Eqs. (7) and (40), we 

have

(42)

3H> + 4^։-m։')i = O. (43)

From Eqs. (42) and (43), we have

*(')=“P^4^(r4-։)^ (44)

where r, is constant of integration. From Eqs. (42) and (44), we have

«(')=«pf-1 ■*₽ W|('< - () j ֊ № r]. (45)
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2.3.2. The energy density is dominated by $։/2. Since energy density 
is dominated by kinetic energy density and there is no role of potential function 
^($). Therefore, this case is similar to the section 2.1.2.

2.3.3. The regime when P($)«|’/2. In this regime, we neglect 

then from Eq. (10), we have

° <-!«)

From Eqs. (40) and (46), we have

cxp(4A/Vm*+0 '

2.3.4. Evolution of universe by energy density of matter/radiation 
pT. in this regime, energy density of the universe is dominated by matter with 
equation of state p1 = yp1- This section is similar to the 2.1.4.

2.4. Section D. We consider

KW-K,*«,*’ (48)

where, fl|avW^ with p<a6.

2.4.1. The energy density is dominated by k($). In this regime, we 
have $2/2«K(|), pT«K($) and |$|«|3//4|. Thus, by p = $2/2-/($) and 
p=*’/2 *>'(♦), we have

P + F = °- (49)
For Dat FRW case with condition |/0|«|a1|/>|, from Eqs. (7) and (48), we have

<50)

3tf|+4v(»։-mJ)»=0. (51)

From Eqs. (50) and (51), we have

From Eqs. (51) and (52), we have

(53) 

where
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2.4.2. The energy density is dominated by $2/2. Since energy density 
is dominated by kinetic energy density and there is no role of potential function 
y(0). Therefore, this case is similar to the section 2.1.2.

2.4.3. The regime when r(<J>)a02/2. In this regime, we neglect 3770, 
then from Eq. (10), we have

From Eqs. (48) and (54), we have

( ,_____, „>*€*-*) . *
('-<>)* ՜'։ (55)

where r, is an integration constant. For at > 0, no physically plausible solution is 
possible. However, for a( < 0, the Eq. (50) is contradicted. Threfore, no physically 
plausible solution is possible.

2.4.4. Evolution of universe by energy density of matter/radiation 
p7. In this regime, energy density of the universe is dominated by matter with 
equation of state pr - -fpr. This section is similar to the 2.1.4.

3. Discussion and Conclusions. The main goal of our work is to perform 
a general investigation of scalar field cosmology in theories with negative potentials. 
It is quite interesting that with an account taken of general relativity potentials 
that have minimum of ^(ֆ)< 0 can behave like potentials unbounded from below.

A general feature of all trajectories bringing the universe towards the singularity 
is that Փ2/շ becomes much greater than /(Փ) near the singularity. This means 
that the description of the singularity is nearly model-independent, at least at the 
classical level. In particular, the equation of state of the universe approaching the 
singularity is p = p.

However the conclusion can be changed when an account is taken of quantum 
effects, including particle production near the singularity. The particle production 
near the singularity is so efficient that it turns off the regime p = p when a 
contracting universe approaches the Planck density. The effects related to particle 
production are especially significant in an expanding universe as they tend to 
completely eliminate the stage with p = p.

In addition to the general study of cosmology with negative potentials, the 
investigation of the possibility that our universe can undergo repeated cycles of 
inflation and contraction (i.e. bounce and a cyclic universe) may be performed 
(10,11]. This scenario may allow us to combine attractive features of the oscillating 
universe model (12-16] and chaotic inflation [5].

The models allow for one simplification that resolves most of their remaining 
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problems. If one removes the minimum of potential at и(ф)<0, one returns to 
the usual scenario of chaotic inflation. It may describe an eternally self producing 
inflationary universe, as well as the present stage of accelerated expansion.

For most of our models, the scalar field ф(г) and the expansion parameter 
a(f) arc continuously increasing or decreasing functions of / and they tend to be 
constant, when t is very large.

Many other aspects of the present work is under our active consideration for 
a future study by dynamical system method and phase portrait. The cosmology 
for scalar fields with negative potentials and = pф/р, < -1 leading to a
collapsing universe is under investigation on the lines of the work by Macorra 
et al. [7]. We arc considering to undertake a comprehensive study of cosmological 
models with negative potentials and there perturbation analysis in a future work. 
We will also study a fast-roll inflation in a universe [6].
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НЕКОТОРЫЕ КОСМОЛОГИЧЕСКИЕ МОДЕЛИ С 
ОТРИЦАТЕЛЬНЫМ ПОТЕНЦИАЛОМ

Т.СИНГХ'-', Р.ЧАУБИ1, А.СИНГХ11

Исследованы некоторые космологические модели, где эффективный потенциал 
И(ф) может стать отрицательным при некоторых значениях поля ф. Космологическая 
эволюция в моделях с минимумом при И(ф)< 0 аналогична в некоторых отношениях 

эволюции в моделях с неограниченными снизу потенциалами. В этом случае, вместо 
того, чтобы достичь режима AdS, в котором доминирует отрицательная энергия 
вакуума, вселенная может достичь точки поворота, где плотность энергии энергии 
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исчезает, а затем она сжимается до сингулярности. В некоторых случаях такие модели 
могут привести к отскоку.

Ключевые слова: Космологические модой: отрицательный потенциал: отскок
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