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The timelike world line of a free particle is a maximizing curve for the integral / ■• f dr 
in the class T of neighbouring admissible timelike curves joining the events A. B, and satisfying 
the side-condition imposed on the 4-velocity o « gti‘x‘ -1 ( x - dx fdt). Considering the problem 
of extremizing integral / as a time optimal problem, we show that the multiplier X(x) associated 
with the equation o - 1 is constant along C, and may be identified with the proper mass m of 
the free particle. The constancy of m can thus be regarded as a consequence of the path dependence 
of proper time.
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1. Introduction. According to the geodesic hypothesis, the world-line Co of 
a free mass point joining two events A, B is a timelike geodesic in Riemannian 
space-time, thus Co satisfies the variational equation

B
6/ = 8jdr = 0 (1)

4
and this leads to the equations of the geodesic

Di1 =0 (0 = 8/6։) (2)
where x1 = d?/ds is the unit tangent vector to the world line Ca so that 

lp(x,x)»g/x'=l. (3)

From the assumed constancy of the invariant proper mass m, multiplication 
of (2) by m yields the equations for the parallel propagation of the 4-momentum 
p1 = mi՝ along Co, i.e.

Dmx'-O. W
Put into words 6Z(Co)=O says that the world line Co furnishes an extremum 

(maximum) to the integral I in the class T of neighbouring admissible timelike 
curves. The class T is composed of the smooth, future-pointing timelike curves 

x'=?(s) f = 0,l,2,3) (5) 
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joining the fixed end-events
A :x*(r|)sX| , fllX^SjJeXj (6)

and satisfying (3), which not only restricts the parameter s to be the natural 
parameter (proper time) along the timclikc curve (5) but it also specifics the 
timelikc character of the tangent vector x(s).

Remark 1: Evaluation of the integral I along Q can be given a chronometric 
interpretation, it corresponds to the interval of proper time registered between the events 
A, B by a standard clock carried by the free particle. In the class 1' of admissible 
curves the geodesic Co is a maximizing curve for the integral / = J ds |1J.

The purpose of this note is to show that, as a consequence of the multiplier 
rule imposed on Q in order that it be a maximizing curve for the integral /, 
the multiplier X(j) associated with the constraint (3), i.e. q> = 1, must be a positive 
constant, so that the Euler necessary condition for an extremum may be written 
DX x' = 0; X may thus be invested with physical meaning, it corresponds to the 
proper mass of the free particle.

Remark 2: Novozhilov and Yappa [2] choosing for a pointlikc charge inter­
acting with a given electromagnetic field the Lagrangian

L = yzr։{j/u,-c2)- — AfUj (u‘ =dx'ldx^,

interpret the factor m/2 as playing the role of the Lagrange multiplier, assumed 
constant, associated with the side condition (3), serving to specify the parameter 
5 on Co. As we shall see the proof that the multiplier, associated with Co, must 
be constapt is not so simple. For a free particle a Lagrangian of the form 
L = (m/2)(u'u,-l) has been proposed by Peres and Rosen (3).

2. Mathematical preliminaries. Formulated in the manner described in 
Section 1, the problem of extremizing integral I in the class T of admissible 
timclikc curves, satisfying condition (3), can be regarded, in the space of points 
(s, x), as a nonparametric Lagrange problem [4]. Although the end-points are fixed 
in x-space (space-time), the probem in sx-space is one with variable right 
endpoint. Indeed, as a consequence of the path dependence of proper time, the 
interval (s։ SrSjj) cannot be chosen to be the same for each admissible curve 
in T; without loss of generality, we can restrict the class F to timelike curves 
having the same end-value s, “ 0 of the parameter s at the event A, but at the 
event B the end-value s, must vary when we pass from one admissible curve C, 
to a neighbouring curve C2. As a consequence of the variability of sv besides the 
Euler necessary condition the extrimizing curve Co must satisfy a further necessary 
condition, known as the transversality condition. The combined results of the 
theorems stating these condtions arc called by Bliss the multiplier rule [4]. In 
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the language of physics the problem under consideration is often designated as 
a time optimal problem. The results of this section follow from the non-paramctric 
theory. The multiplier rule ensures that there exists a function [4.5] defined by

F(x, x, X)=Xo + X(s)(p(x, x)-1] (7)
such that the Euler-Lagrange (EL) equations

,) ±F,-F,=0. b) 9-1 = 0 (8)
as

hold at each point of Co. The multipliers Xo = const and X(s) do not vanish 
simultaneously at any point of Ca. Moreover because of the variability of sj։ C9 
must satisisfy the transversality condition (4-6]

+ (9)

where (x,x,x,X) is taken at the first end-point of Co when a = l and at the 
second when a = 2. In sx-space, the end-conditions satisfy the equations

j։=0, X:x‘(s։)=x{, 5:x'(s2)=xJ. (10)
Thus the transvcrsality condition (9) takes the form

(f-x-f^-o. (11)

Remark 3: In the derivation of Lagrange’s equations from the variational 
principle 5 JLds = 0. the multiplier rule is often treated inadequately, e.g. [7]. The 
Lagragian L is simply modified by setting L = £+X(s)(<p-l), i.e. the multiplier 
Xo is arbitrarily chosen as unity.

3. Derivation of the equation of motion and physical interpreta­
tion of the multiplier X. We briefly sketch the computations for obtaining, 
from (8) and (9), (11) the equations of motion of a free partcle in the form (4). 
Upon multiplying (8a) by x‘ and with the aid of the relation

x*Ff =(2F֊X,+X), (12)

which is obtained from (7) by making use of the homogeneity of <p in the 
variables x', x'=2, it follows that

x'f—F.-F.K—F+2—X = 0.
Vds ? ds ds

Substituting for F, eq. (7), we obtain

■ <>’)

Consequently, X has a constant value along Ce. This is all the information 
obtainable from the EL equations. Further useful information concerning X comes 
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from the tranvcrsality condition (11).
In view of (12), (11) reads

F-x*Fi,=(F-2(F-X։+ML-

Substituting for F we find
X, -2X(։։) (14)

On account of (13) we deduce that if Co is to maximize the integral /, the 
multiplier X associated with equation (3) must be constant and equal to X0/2> 0. 
Moreover we observe that if Xo =0, by (13) and (14) X - 0. The multiplier rule 
assures that if Xo=0, X does not vanish simultaneously anywhere on [s|։ sj. 
The maximizing curve Co is said to be normal. For a normal curve, multipliers 
Xo = I, X(s) always exist and in this form they arc unique. Furthermore, C* as 
a normal extremizing curve may be imbedded in a one-parameter family of 
admissible curves g T, which satisfy the end conditions (10) [4J. As a consequence 
of the constancy of X, the EL equations (8a) can be written in explicit form 

=2X^,i'+l(։#.,+ïaj-gA,)i‘i'J»0 (15)

on multiplying by g1' we get
2x(i'+lJ,xyi*)=2XOi՛ (Z> = 5/S։) (16)

from the constancy of X we deduce from (16)

DXx‘=0. (17)
Comparison with the equation of motion (4) shows that X may be identified 

with the proper mass m of the free particle. Adopting the point of view of 
variational analysis the constancy of m may thus be regarded as a consequence 
of the path dependence of proper time.
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ОБ ИНТЕРПРЕТАЦИИ СОБСТВЕННОЙ МАССЫ КАК 
ПОСТОЯННОГО МНОЖИТЕЛЯ ЛАГРАНЖА

Р.А.КРИКОРИАН

Временно-подобная мировая линия Со свободной частицы, это максими­
зирующая кривая для интеграла / = в классе Г соседних допустимых 
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временно-подобных кривых, соединяющих события А, В и удовлетворяющих 
боковым условиям, наложенным на 4-скорость ф-^х'х7 “1 (х' = Л'/Л). 
Рассматривая максимизацию интеграла как проб.чему оптимального времени, 
показано, что множитель Х(з), связанный с уравнением ф = 1, постоянная 
вдоль С, и се можно отождествить с собственной массой т свободной 
частицы. Постоянство т можно рассматривать как следствие зависимости 
собственного времени от траектории.

Ключевые слова: собственная масса:множитель Лагранжа
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