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We investigate the dynamics of locally rotationally symmetric and spatially homogeneous 
Bianchi type-1 (LRS) space-time with linear equation of state filled with perfect fluid in the 
framework of f(T) gravity. We apply the gravitational field equations for the linear and quadratic 
form of f(T) gravity. We determine the aspects of Bianchi type-I space-time by considering hybrid 
expansion law (HEL) for the average scale factor that yields power-law and exponential-law 
cosmologies, in its special cases. It is observed that initially the model is unstable and then it is 
stable in both linear and quadratic case Also, the universe exhibits transition from deceleration to 
acceleration phase.
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I. Introduction. The recent cosmological observations [1-5| indicate that our 
universe is undergoing in an accelerating expansion phase due to an exotic energy 
which has a component with negative pressure so called dark energy (DE) (whose 
nature and cosmological origin still remains enigmatic at present). Many candidates 
of DE have been proposed such as Quintessence, Phantom, Quintom, Chaplygin 
gas and so on. The simplest candidate of the DE is the cosmological constant 
A , but there are serious theoretical problems associated with it (such as the fine
tuning problem, the coincidence problem) |6).

Another alternative approach dealing with the acceleration problem of the 
universe is changing the gravity law through the modification (the modification 
of gravitational action may resolve cosmological problems, dark matter, paradigm 
DE issues.) of action in general relativity (GR). This modification gives the Scalar 
tensor theory, Brans-Dick theory, string theory. Gauss-Bonnet theory. /(/?) 
theory, f(R, f) theory and /(r) theory. The modified theories have recently 
gained a lot of interest during the last decade. In the present investigation, we 
focus towards /(r) theory as it is best to account for the present accelerating 
expansion. In /(f) theory, Weitzenbock connection is used instead of the 
curvature defined via the Levi-Civita connection in GR. If one chooses to use 
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the Weitzenbock connection, the geometry is Hat in the sense that the affine 
connection has zero Rieman curvature and the field equations are completely 
described in terms of the torsion tensor. In order to explain the present cosmic 
accelerating expansion. Linder |7| investigated that the power and exponential law 
models depending upon torsion might give the de-Sitter fate of the universe by 
proposmg two new /(r) models. Wu and Yu |8| analyzed the dynamical property 
of this theory and showed that the universe could go forward from radiation 
dominated era to matter dominated era and finally enter in an exponential 
expansion era. Considering two new' form of /(T) models Wu and Yu |9| showed 
how the crossing of phantom divide line takes place to these models. Karami and 
Abdolmaleki 1101 obtained equations of the state parameter of polytropic, standard, 
generalized and modified Chaplygin gas in this modified scenario. Bamba el al. 
(11] studied the cosmological equations of slate in exponential, logarithmic and 
their combined /(f) models. Myrzakulov ]12| discussed different f(T) models 
with scalar fields and gave systematic solutions for scale factors and scalar fields. 
Sharif and Rani explored Bianchi type-1 universe using different gravity /(r) 
models (13]. Recently, some interesting /(7՜) models have been explored by 
different authors, Chirde and Shekh 114] deliberated a spatially homogeneous and 
isotropic model in the context of /(f) gravity with thermodynamic aspects. Jamil 
Amir and Yussouf |15| construct of /(f) models within the Kantowski-Sachs 
universe using the conservation equation and equation of state parameter, which 
represents the different phases of the universe. Gamal and Nashed |16| investigated 
anisotropic models with two fluids in linear and quadratic forms of f(l) 
gravitational models.

I he draw round of this paper is as follows: In Sect. 2, the preliminary review 
ol the /17՜) theory is presented. In Sect. 3, Field equation and their solution 
are provided. Stability of linear and quadratic form of the /(r) model is given 
in Sect. 4. In Sect. 5 we discuss some kinematical parameters and finally Sect. 
6 contains concluding remarks.

2. /(7 ) Gravity formalism. In this section we give a brief description of 
the f\T} model and a detailed derivation of its field equations.

Lei us deline the notations of the Latin subscript as these related to the tetrad 
field and the Greek one related to the space-time coordinates. For a general space
time metric, we can define the line element as

dS'= gRV dx^ dx* . (1)

This line element can be converted to the Minkowski's description of the 
transformation called tetrad, as follows

dS‘ = g^dx^dxv = T^O'G' , (2)
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dx^efV, 0’=e'<&\ (3)

where is a metric on Minkowski space-time and q,, = diag[land 
ef ev = 8v or e?e» = 5/ • The root of metric determinant is given by =
= dct[e^] = e. For a manifold in which the Riemann tensor part without the 
torsion terms is null (contribution of the Levi-Civita connection) and only the non
zero torsion terms exist, the Weitzenbocks connection components are defined as

Tgv = e? < = ֊< 5V e“ , (4)
which has a zero curvature but nonzero torsion. Through the connection, we can 
define the components of the torsion tensors as

(5)
The difference between the Levi-Civita and Weitzenbock connections is a space
time tensor, and is known as the contorsion tensor:

(6)

For facilitating the description of the Lagrangian and the equations of motion, 
we can define another tensor S^v from the components of the torsion and 
contorsion tensors, as

sr (7)
\ " *

The torsion scalar 7’ is

7՝ = 7՝a5gv. (8)

Now, we define the action by generalizing the TG i.e. /(7՜) theory as

5, = J[r+/(T)+Zmaner]et/4x. (9)

Here, /(r) denotes an algebraic function of the torsion scalar 1 Making the 
functional variation of the action (9) with respect to the tetrads, we get the 
following equations of motion

)+r>i^x](i + A)+78;(r+/)=4Jtç. (io։ 
4

The field equation (10) is written in terms of the tetrad and partial derivatives 
and appears very’ different from Einstein's equation.
where Tpv is the energy momentum tensor, fT=df{T}/d7 and by setting 
/(r)= a0 = constant this is dynamically equivalent to the GR.

3. Solution of the field equations. In this section we find exact solutions 
for Bianchi type-1 space-time in /(T) gravity and some physical quantities.
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Spatially homogeneous and anisotropic Bianchi type-I (LRS) space time is 
given by

ds2 = dt2- A2(t)dx2- B2[t}dy"vdz2, U0
where A and B be the metric potential which is the functions of cosmic time 
t only.

The corresponding Torsion scalar is given by

(12)

Let us assume that the matter content is a perfect fluid such that the energy 
momentum tensor is

T? =(p+p)w' uß֊Pg^O3) 

and satisfies the equation of slate
p = £p-y, (14)

where e and y are constants.
The commoving coordinates are

uv=(0,0,0,1) and mvwv=1, (15)

where uv is the four-velocity vector of the fluid, p and p be the pressure and 
energy density of the fluid, respectively.

From the equation of motion (10), Bianchi type-I space-lime (11) for the 
fluid of stress energy tensor (13) can be written as

(r+ /)+4(l + f'r)l—+ + — - +4— t fn = £2(y֊ep),
T B B2 AB B 77 ’J

It I 1 -> A B A B , • \(T + /)+2(l + fTy -+ + n+3-----> + 2< — + — > T/rr = £~(y-£p),’ABB2 AB \A B\ Jrr V '

(16)

(17)

(18)

where ihe dot (■) denotes the derivative with respect to lime t.
Finally, here we have three differential equations with five unknowns namely 

A, B, f, p, p. Ihe solution of these equations is discussed in next section. In 
the following we define some kinematical quantities of the space-time.

We define average scale factor a and volume V as

V = a3 =>TaB2 . (19)
Another important dimensionless kinemalical quantity is the deceleration parameter 
(DP) q, which shows whether the universe exhibits accelerating volumetric
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(20)

For -l<7<0, ^>0 and q = 0 the universe exhibit correspondingly accelerating 
volumetric expansion, decelerating volumetric expansion and expansion with constant
rate respectively.

The directional Hubble parameter in the direction of x, y and z-axis. 
respectively, are

ITie mean Hubble parameter, which expresses the volumetric expansion rate of 
the universe, is given as

// = 1(h,+w2+//։). (21)

Using equations (19) and (21), we obtain

(22)

To discuss whether the universe either approach isotropy or not, we define an 
anisotropy parameter Am as

(23)

The expansion scalar 0 and shear scalar <r are defined as follows

(24)

<s2=-H2Am. (25)

To solve the field equation, as it was mentioned, we have used the hybrid 
expansion law (HEL). Ilie power-law and exponential law cosmologies can be used 
only to describe epoch based evolution of the Universe, because ot the constancy 
of deceleration parameter. These cosmologies do not exhibit the transition ol the 
universe from deceleration to acceleration. In order to explain such transition 
Kumar 117], Akarsu ct al. 118] consider the following form ol scale factor ol the 
universe

a(t)= ta ep', (26)

where a, > 0, a > 0 and 0 > 0 are constants.
This generalized form of scale factor is called as the HEL which leads io the

H='-V-
3 V a
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power-law cosmology for 0 = 0 and exponential-law cosmology for a = 0 and the 
case a >0 and 0>O leads to a new cosmology’ arising from the HEL. Thus, the 
power-law and exponential law cosmologies are the special cases of the HEL 
cosmology. This choice of scale factor yields a time-dependent DP (see eq. 28 & 
Fig.l) such that before the DE era, the corresponding solution gives the inflation 
and radiation/matter dominated era with subsequent transition from deceleration to 
acceleration. Thus, our choice of scale factor is physically acceptable. Using HEL 
very recently. Bhoyar cl at. 119] investigated some features of non-stalic plane 
symmetric universe filled with magnetized anisotropic dark energy in f(R,T\

Also, the observations of the velocity red-shift relation for extragalactic sources 
suggest that Hubble expansion of the universe is isotropic within ®30 percent 
[20.21]. To put more precisely, red-shift studies place the limit (a///)<0.3 on 
the ratio of shear n to Hubble constant H in the neighborhood of our galaxy. 
Collin et al. |22] have pointed out that for spatially homogeneous metric; the 
normal congruence to the homogeneous expansion satisfies the condition that 
(a/0) is constant i.e. the expansion scalar is proportional to the shear scalar. This 
gives the relation between metric potentials as

A = Bm . (27)
For the scale factor (26), we get time dependant values of the DP as

(28)

Initially when the universe starts to expand the sign of q becomes positive which 

Time

Fig. 1 Deceleration parameter verses time t
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correspond to the standard decelerating behavior, which is consistent with the 
recent observations 11-3], as well as with the high red shifts of type la supernova, 
whereas with the expansion of the universe the sign of q become negative which 
correspond to the standard accelerating behavior of the universe, This scenario is 
also consistent with recent observations. This value is very near to the observed 
value of DP i.e. -1 < q < 0 . This implies that the Bianchi type-I space-time shows 
flipping, decelerating to accelerating phase. This behavior depicts in Fig.l.

For this model, the corresponding metric coefficients A and B comes out to be
j (m+2) e3mßr/(m<֊2) (29)

# _ (’•+2) e3ß։/(’"+2) (30)

From equation (12), the torsion scalar 7՜ becomes

(31)

Using equations (29) and (30), spatially homogeneous and anisotropic Bianchi 
type-1 space-time with linear EoS filled with perfect fluid within the Iramework 
of f(T) gravity becomes

ds2 = dt2 - a?mi^2 (32)

The metric (32) with j(r) and B(t) given by the equations (29) and (30) 
represents an exact accelerating Bianchi type-1 space-time with the specific term 
of the scale factor. At the initial time r=0, when the universe start to expand, 
the directional scale factors j(r) and 2?(r) vanish. At a special case ol m 1 our 
derived universe approaches isotropy.

4. In the following section we inspect some well recognized 

models and their stability.
Case-1: Linear /(r) gravity
In this case we substitute /(7’)=T in equations (16)-(18), then the held

equations take the form
B2
B2

(33)

(34)

(35)
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Using the values of metric coefficients A(l) and which are given in equations 
(29) and (30), energy density, pressure and stability function of the universe comes 
out to be energy density,

(36)

In linear case, it is seen that the energy density of the universe is a function 
of time and decreases with the expansion and al t -> x , p -֊> 0 . Thus the universe 
approaches towards a flat universe at late lime. As a result, our model is in good 
agreement with the recent observation. So that we have for the pressure

(37)

and the stability function,

3a(m+ 2)՜
(38)

dp 2\m- 
dp 3(1 + 2m]

We consider the stability by using the function c = dPjd p . The stability of the 
model occurs when c՛ >0. Il is observed that in our model it depends on the 
value of constant m. For 0<m< 1.5, at the time of big-bang the model Ls unstable 
c* <0. For small interval of t and for /n > 1.5 the model is stable. It is clearly 
depicted in Fig.2.
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Fig 3 Behavior of dP.'dp versus cosmic time for non-linear case.

5. Some Kinematical Parameters:
The average scale factor a and the spatial volume V become 

a = cZj ta e^‘,

r = a։3(za/')3-

The mean Hubble parameter H and the expansion scalar 0 take

The anisotropy parameter Am and shear scalar a2 are given by

(45)

(46) 

the form

(47)

(48)

(49)

(50)

In a hybrid expansion model, we observed that the torsion of the universe 
is time dependant. Spatial volume of the universe starts with big bang (at t —> 0) 
and with the increase of time it always expands. Thus, inflation is possible in 
this model. I his shows that the universe starts evolving with zero volume and 
expands with time t.
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The Hubble parameter H, scalar expansion 0 and shear o are the functions 
of time and decrease as t increases and approaches to small constant value at later 
time. This suggests that at initial stage of the universe the expansion of the model 
is much more faster and then slow down for later time. This shows that the 
evolution of the universe starts with infinite rate and with the expansion it declines 
The anisotropic parameter is constant and independent of time. It depends only 
on the values of constant m and is equal to zero for m = -2. Thus the nature 
of an anisotropic parameter is constant in the evaluation of the universe and in 
particular for m=l, the universe is isotropic in both phases (acceleration & 
deceleration), which is observed by observational data of WMAP. So that our 
anisotropic model is the generalized model and it goes over to particular isotropic 
model, for particular value of m = I. It is also seen that the model has shear that 
disappear in the model. The behavior of Hubble parameter and expansion scalar 
versus time t is shown in Fig.4.

Time

Fig.4. Behavior of Hubble parameter and Expansion scalar versus time /.

6. Conclusion. In this paper, we have studied spatially homogeneous Bianchi 
type-I space-time with linear equation of state Idled with perfect fluid within the 
framework of /(r) (linear and quadratic form) gravity. We choose a kinematical 
ansatz called hybrid expansion law which yields power-law and exponential law 
cosmologies in special cases to figure out the exact solutions of the field equal ions 
Also we have discussed some geometrical and physical properties of the model with 
following observations.
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The present model exhibits a singularity and it evolves with zero volume at 
time r->0. We see that the deceleration parameter decreases rapidly and ap
proaches to ֊1 asymptotically which shows de-Sitter like expansion at late time. 
For this model, the deceleration parameter gives a transition from a decelerating 
expansion phase to the present accelerating phase. The Hubble parameter, the 
scalar expansion and shear are the functions of t. The universe starts with infinite 
rate and with the expansion it declines. It is also seen that the model has shear 
that it disappear with expansion. In both cases the model initially is unstable and 
with the expansion it becomes stable.
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СТАБИЛЬНОСТЬ УСКОРЯЮЩЕЙСЯ ВСЕЛЕННОЙ С 
ЛИНЕЙНЫМ УРАВНЕНИЕМ СОСТОЯНИЯ В /(Г)
ГРАВИТАЦИИ ПРИ ИСПОЛЬЗОВАНИИ ЗАКОНА 

ГИБРИДНОГО РАСШИРЕНИЯ

С.Р.БХОЙАР1, В.Р.ЧИРДЕ2, С.Х.ШЕХ3

В рамках /(Г) гравитации исследуется динамика пространственно 
однородного пространства-времени Ьианчи первого типа с линейным 
уравнением состояния, заполненного идеальной жидкостью. Применяются 
уравнения поля для линейных и квадратичных форм модифицированной 
/( / I гравитации. Мы определяем указанное пространство-время, рассматривая 
закон гибридного расширения для усредненного масштабного множителя, 
который в частных случаях приводит к космологиям с показатеьными и 
экспоненциальными законами. Оказывается, что в обоих случаях - линейном 
и квадратичном, модель вначале нестабильна, но затем стабилизируется. 
Вселенная показывает также переход от фазы замедления к фазе ускорения.

К_1ючевые слова, пространство-время Ьианчи первого типа:линейное уравнение 
состояния: /( !} гравитация: чакон гибридного расширения
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