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We study a hypersurface homogeneous space-time in the framework of the f(R,T)
theory of gravitation in a presence of perfect flud. Exact solutions of field equations are
obtained for exponential and power law volumetric expansions. We also solve the field equations
by assuming the proportionality relation between the shear scalar (o) and the expansion scalar
(9). It is observed that in the exponential model, the universe approaches isotropy at large time
(late universe}. The investigated model is notably accelerating and expanding. The physical and
geometrical properties of the investigated model are also discussed.
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1. Introduction. Recent observational data regarding high red shift from
the Type 1a supernova and cosmic microwave background anisotropy indicate
that the universe is accelerating [1-4]. The explanation of the late time
accelerated expansion of the universe as well as the existence of dark energy
(DE) and dark matter (DM) have received considerable attention. From past
few decades, the general theory of relativity has been modified in several ways
to consider natural gravitation as viable alternative to DE [5]. These modified
theories are obtained by modifying the Einstein-Hilbert action in the general
theory of relativity, because it provides a mean for understanding the problem
of DE as well as the possibility for reconstructing the gravitational field theory
potentially reproducing late- time acceleration. Among the vanous modifications
the f(R) theory of gravity is most suitable to explain the exact nature of
accelerated expansion of the universe. The f (R} theory provides a natural
unification of early- time inflation and late -time acceleration [6). Modified
gravity can be categorized into several classes, including f(G) gravity, f(R.G)
gravity, f(T) gravity and f(R,T) gravity.

Bertolami et al. [7] proposed a new class of modified theories of gravity
by explicitly coupling the arbitrary function of the Ricci scalar (R) with matter
Lagrangian density L_. Herko et al. (8] extended this model by coupling
geometry and matter. The f(R T) gravity is a modification of the f(R)
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theory, where T dependence is induced by quantum effects or exotic non-ideal
matter configurations [9]. The f (R, T) action [8] is given as follows:

g 1 .

where f(R,T) is an arbitrary function of the (R) and (7) the energy tensor
of the matter T. and L_ represents matter Lagrangian density. Harko et al,
[8] derived the field equations of f (R, T) gravity by varying the action .S of
the gravitational field with respect to the metric tensor components &

In the f(R, T) theory of gravity, the variation of the matter -energy tensor
can be considered with respect to the metric. Therefore, reconstructing the
Friedman-Robertson-Walker (FRW) cosmologies as an appropriate choice of
the function f(T) is possible. Moreover, Azizi [10] studied the wormhole
solutions in the framework of f (R,T) gravity. Naidu et al.[11] explored the
FRW space time in relation to the f (R, T). Reddy, Kumar [12] considered
the LRS Bianchi type Il space-time with the perfect fluid in the framework
of the f(R,T) gravity. A spherically symmetric fluid cosmological model with
an anisotropic stress tensor in general relativity was studied by Pawar et al.
[13]. Sharif et al. [14] investigated the energy condition in the f (R, T) gravity
for the FRW universe with the perfect fluid. Jamil et al. [15] reconstructed
cosmological models in the context of f (R,T ) gravity and demonstrated that
the dust fluid reproduces the ACDM, non-phantom era and phantom
cosmology. Houndjo [16] investigated the cosmological models by using the
function f(R,T)= f,(R)+ £,(T) in f(R,T) gravity. Myrzakulov [17] studied
metric-dependent torsion with the f(R,T) theory of gravity and derived a
model from the geometrical viewpoint. Motivated by the aforementioned
studies, we studied the hypersurface homogeneous space-time in the f(R,T)
theory of gravity.

2. The f(R.T) theory of gravity and field equations. The stress
energy tensor of the matter is as follows:

Tf-—}—(-‘\-gl.. 5)
v J-2 ‘?g-.‘ » ()

Hence, we obtain the field equations of the f(R,T) gravity model as follows:

fo(R.T)R, 1/(R.rlg,,~ JVV, -V (R T)=

3
:SRZJ‘fT(RyT)T;j—fr(R’T)G)q» i

afRT) . _3/(R.T)

where 0 2T ~pRys, fa= 5
) PE, x AR r ar

, V is the covariant
derivative.

We assume the function f(R, T) is given by
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f(R,T)=R+2£(T), @

where the f,(T) is an arbitrary function of the trace 7. Recently, Chaubey,
Shukla [18] discussed the Bianchi type [ space time in the context of the
f(R,T) theory of gravitation using the special form of the average scale factor
and obtained a new class of the cosmological models. Ram et al. {19] obtained
a new class of exact solutions of the Bianchi type cosmological models in the
presence of a perfect fluid for particular choice of the f(R,T)= R+2AT, where
A is a constant.

We consider the hypersurface homogeneous space-time as follows

ds? =—di*+ AX(t)dx + BX(t)|dy?+ 52 (y, k)2, )

where 8y, k)=siny,y,sinhy for k=1, 0, -1 respectively. 4(t), B(t) are the
cosmic scale functions. The hypersurface homogeneous space-time is cosmologically
crucial. Ram, Verma [20] studied the hypersurface homogeneous space-time
with a bulk viscous term and found some exact solutions. Reddy et al. [21]
studied the Kantowski- Sachs space-time in the presence of a massless scalar
field with a flat potential. Katore [22] investigated the magnetized Kantowski-
Sachs inflationary cosmological model in the presence of a mass less scalar
field with a flat potential.

The energy momentum tensor for perfect fluid is given as follows:

T, =(P+P)".“1+Pgejr (6)
where p is the energy density of the fluid, P is the pressure. ' represents the
four velocity vector of the fluid, with components (0, 0, 0.1) satisfying w,u’ =-1.
The equation of state of a perfect fluid is p=yp with ye[0,1]. The condition

0<y<1 is necessary for the existence of local mechanical stability. Here, the
matter Lagrangian can be taken as L = - p. Further, we choose

£(T)=uT. ()
The corresponding field equations for the metric (7) can be written as follows:
2B B‘
T3 gt e 2w)p+ CGupope), @)
Ay B, AB,
L4 =(8=+2u)p+{Sn p—pp),
e S (824 2u)p+ (Su p- o) )

- 3
.—3%' z";‘ ' t, v ~(8r+ 2p)p + (Su p— pp), (10)

where the subscript "4” is used to denote the differentiation with respect to time 7.
The volume of the universe is given as follows:
V=48, (n
From equations (8), (9) and (10), we obtain
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A, B.;).'lj'k
A B Wi SEE
where A represents a constant of integration.
The directional Hubble parameter in the direction of the x, y and z axes
are H_, H,, H, respectively defined as follows:

A, B
H, = ‘4‘ H, =H, = B‘ (13)

: "'dh (12)

The mean Hubble parameter is given by the following:

1V, 1(4, 2B,)
H = =2 2oy
v 3L A B ) (14)
The anisotropy parameter is defined as follows:
S(H-HY

A=3§[ Tl (15)

where H (i=1, 2, 3) are the directional Hubble parameters in the direction
of the x, y and z axes respectively. The expansion scalar (6) and shear scalar
(o) are defined as follows:

(A, 2B,)
0=3H =| - B - 4
\ 4 5 ) (16)
W IR o i U
o’ AH® = 7
> 3\ 2 "B (17)
Taking k=10, the equation (12) leads to
AN
A s 7 ¢
Further, integration of equation (18) gives us
oy | Aee)
B = L.\pl. II"JIJ (19)

Now, we have the three independent equations (8)-(10) in four unknowns P, p,
A, B. For complete determinacy of the system, we consider two volumetric
expansions namely, exponential and power law [25]. Because, the law of variation
for the Hubble parameter proposed by Berman yields a constant value of the
deceleration parameter. This law is not consistent with our observations. Thus, a
new variation of the Hubble parameter is proposed, which led the two volumetric
expansions [25]. The volumetric expansions are as follows [23,24]:

Vece, (20)

V=c, ", (21)

where c,, ¢,, / and m are arbitrary positive constants. When 0<m< 1, the power
law model yields the constant deceleration parameter g, whereas when m > 1

D
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it yields accelerated expansion. Notably we get an inflationary universe for

¢=0 and m=1. The exponential expansion mode! reveals accelerating volumetric
expansion.

3. Exponential expansion model Considering equation (19) for the
volumetric exponential expansion from equation (20), we obtain

1 N8 W
A= (cchy exp{. It—q—_r i ‘ (22)
{ 3 !
B2 | explits 2o @3
'\ G \ mc,

Clearly from equations (22) and (23), in the early stage of the universe, the
values of scale factors of the universe are approximately constant and increased
very slowly for />0. At a specific time, the universe suddenly exploded and
expanded to large extent, which is consistent with the Big Bang scenario. A
similar result was obtained by Singh and Beesham [24], as well as Katore,
Hatkar [26).

Using equation (8) and with the help of equations (22) and (23), the energy
density and pressure are as follows:

1G5, -~ Wy AT
A e

P=16n * 48nd 2
Ll e
TSP (23

From equations (24) and (25), we observe that p>0, p>0 for a specific
constant. Notably, the energy density is a decreasing function of time (see

0.33

032

Energy density

0 02 04 06 08 1.0

Cosmic time

Fig.1. Plot of energy density for /=c, =k =1.
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Fig.1). The model behaves like a steady - state model of the universe at large
time. This is analogous to the findings of Das, Sarma [27]. In literature, the
stability of the model was investigated using the sign of the ratio dP/dp.
Stability occurs when the ratio dP/dp is positive. Here, the ratio is
dP/dp =1/5>0; therefore, model is stable.

The expansion scalar (0 ), shear scalar (¢ ), deceleration parameter (q) are
obtained as follows:

8=31, (26)

2 _ A -3t
o ek @R
q=-1. (28)

The deceleration parameter from equation (28) indicates that the universe
is accelerating. The value of the expansion scalar is constant; that is the rate
of expansion of the universe is constant. At the early stages of the evolution
of the universe the ratio of the shear scalar to the expansion scalar was non-
zero and as the time increases, it tended to be zero, which means the universe
was initially anisotropic whereas at a late time, it approached isotropy. The

condition of homogeneity and isotropy that is lim% =0 formulated by Collins,
11—

Hawkins [28], is satisfied by the present model. The results are similar to those
of Singh and Beesham [24], Katore and Hatkar [26], and Adhav [29).

4. Power Law model By considering equation (19) for power law
volumetric expansion in equation (21), we obtain the following:
4 l‘ ~4'|: r ‘ 1-4'7{“ ey’ . (29)

B=| X[ rme EDY (30)
l| ’
The expressions (29) and (30), show that A and B vanish at r=0. Hence,
the model has initial singularity. Afterward, 4 and B increase indefinitely with
the passage of time, which is in complete agreement with the Big- Bang model
of the universe. The model is similar to those of Akarsu and Kilinc [23], and
Adhav [19]. Morcover, the solution of the field equations is obtained for
y=02. Depending on its numerical values, y describes the dust universe
(y=0), radiation universe (y=1/3), hard universe (ye(l/3,1)), Zeldovich
universe or stff fluid (y = 1) [30]. Therefore, in this model, y = 0.2 represents
the inflationary universe.
The energy density and pressure are obtained as follows:

s 1)
I8m+20)? (D
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)
&= Y8+ 2)° 5%
Clearly, from equations (31) and (32), p>0, p>0 the energy density
is a decreasing function of time. The energy density was very large at the early
stages of the evolution of the universe and as the time increases, it tends to
zero. Thus, the universe may be empty in the far future. A similar result
was obtained by Singh [25]. In the present model, the ratio is dP/dp=1/5>0,
therefore the model is stable. The behavior of energy density is depicted for
the appropriate choice of physical parameters and integration constants in Fig.2.
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Fig.2. Plot of energy denmsity for L =2, p=1.

The expansion scalar (8 ), shear scalar (o), and deceleration parameter (g)
have the following expressions

8- 3,'" , (33)
[

"‘—\/37], ; (34)

g=2 (35)

The ratio of the shear scalar to the expansion scalar indicates that at the
early epoch, the universe was anisotropic and as time passes, it approaches
isotropy. The universe has singularity at #=0. It starts with an infinite rate
of expansion and an infinite measure of anisotropy. For large time, that is
as ¢ &, the shear becomes insignificant. The condition of homogeneity and

isotropy that is }im(o/e):o, formulated by Collins and Hawkins [28] is
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satisfied in the present model. The observations by the differential radiometers
on the NASA's Cosmic Background Explorer registered anisotropy in various
angle scales. These anisotropies are believed to contain the entire history of
cosmic evolution, including the recombination, and are considered indicative
of the geometry and the material composing the universe. The theoretical
arguments [31] and modern experimental data support the existence of an
anisotropic phase, which is transformed into an isotropic one [32]. Our
investigations indicate that the deceleration parameter is positive; that is, the
universe was decelerating at the time of inflation; this is in accordance with
modemn cosmological observations [1-2].

5. Model III. In this model, we have assumed the proportionality relation
of the shear scalar and the expansion scalar for solving the field equations.
The work of Thome [33] explains the reasons for the assumption. The
observations of the velocity redshift relation for extragalactic sources suggest that
the Hubble expansion of the universe is isotropic today within approximately
30%. More precisely, the redshift studies limit the ratio of the shear scalar
to the Hubble constant to o/H <0.3 in the neighborhood of our galaxy [34-
36]. In this connection, [37] pointed out that for the LRS type spatially
homogeneous space-time, the normal congruence to the homogeneous hypersurface
satisfy the condition /6 as constant. Many authors have used this relation
to obtain solutions of the field equations [27,38]. This leads to

A-B" (36)
Using equations (8),(9) and (36), we get

B 2k
2B+ 2n+ 1) = :
wt 2ne 1) T (37)
Equation (37) further reduces to
k
Bl=——+CB2,
i=rn (38)
where C is a constant of integration.
Subcase 1. C=0.
From Eq. (38) for C=0, we yield
nf2
k
A=| — ",
( J (39)
V2
k
B=|——| .
(nz- | ] ‘0

From equations (39) and (40), for n=+l, A, B vanish a1 =0, thereafter,
they start evolving as time increases and finally, they diverge at large time.
The results are similar to those of Akarsu and Kilinc [23], and Adhav (29].
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Moreover, the values of the scalar factoss also vanish for k=0. Thus, this model
does not admit solution for k=0.

The energy density of the model is calculated as follows:
' |
oy

n

By + Tpy —

(41)

p - 8my + Tuy
2y(dn+p)

The expression of energy density obtained in equation (41) shows that it
is a decreasing function of time. The energy condition, that is p >0 is satisfied.
In case of dust fluid y=0, the value of density is positive infinite for p<0.
Furthermore, it is large at =0 and it tends to be zero at large time. Therefore,
the universe may be empty in the far future [25]. The behavior for a suitable
physical parameter and other constant, is depicted in the Fig.3.

The volume (V), expansion scalar (0), shear scalar (o), deceleration
parameter (g) become

where n=

X ((n+2)2 ]
V:'l o | = (42)
2
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Fig.3. Plot of energy density for y=1, 1/3, n=1
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The volume of the universe is clearly an increasing function of time & The
universe evolves with an infinite rate of expansion and anisotropy. Thus, the
model represents the early era of the evolution of the universe. This is consistent
with the Big Bang model of the universe. The shear scalar becomes insignificant
as 1 — o . Furthermore, the anisotropy is maintained throughout the evolution
of the universe. From Fig.4, the sign of the deceleration parameter is negative
and positive for the value of n<-2, -1<n and -2<n<-1 respectively.
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Fig.4. Plot of deceleration parameter.

Subcase II. C=0.
From equation (38) for C#0, we obtain

Az((n+2)CYI/'(n+2)'nln-.‘l, (46)

B = ((n+ 2)C VoD Mlns2) (47)

The value of A and B vanish at =0, they start evolving with the passage
of time and as 1 — o, they diverge, which is consistent with the Big Bang
model. This solution of the field equations is subjected to the condition
k=0, y=0.2. Thus, the model represents the inflationary universe.

The energy density and pressure are obtained as follows

-(},taSJ i sl

P 50-8n )(ne 2 12 “48)
0
L50—8ﬂj(n+ ) & (43)

For an appropriate choice of physical parameters and other integration
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constant, the energy density should be a decreasing function of time (sce Fig.5).
The energy conditions p>0, p>0 are satisfied. The energy density at the
early epoch was large and as time increases, it gradually decreases, approaching
a constant value. Thus, the universe may be in a steady state in the far future.
{n that case, we obtain the same result as that obtained in the study by Das
and Sarma [27]. In this model, the ratio is dP/dp =1/5> 0 that is the model
is stable.

Energy density

0 02 04 06 o8 1.0
Cosmic time
Fig.5. Plot of energy density.

The volume V, expansion scalar 0, shear scalar o, deceleration parameter
g for this model are obtained as follows;

V =(n+2)Ct, (50)
]
0=
i (51)
. ) 62)
q=2. (53)

From equation (50), the volume of the universe is clearly an increasing
function of time. The expansion scalar in equation (51) shows that the rate
of expansion is a decreasing function of time. The ratio of the shear scalar
to the expansion scalar is non zero; therefore, the universe is anisotropic. The
value of the deceleration parameter is positive; that is the universe is decelerating.
The present model is consistent with recent observational data [1,33,39].

6. Conclusion. In the present paper, we investigated perfect fluid cosmological
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model in the f(R,T) theory of gravitation framework for the hypersurface
homogeneous space-time. Under some specific choices of the parameters, in
the exponential expansion model, the rate of expansion of the universe is
constant. The universe is accelerating. The universe approaches isotropy at large
time. In the power law model, we obtained inflationary decelerating universe.
The present models are consistent with the Big Bang model. The condition
of homogeneity and isotropization formulated by Collins and Hawkins [28],
is satisfied by the aforementioned models. The models are valid only for
k=0. Both the models are stable.

In subcase I of the model III, the anisotropy of the universe is maintained
throughout the evolution. The universe is accelerating for n<-2, -1<n and
decelerating for -2 <n<-1.The model is not valid for £=0. While in the sub
case Il of model III, the universe is inflationary. The model has initial
singularity at =0 and the universe evolves with an infinite rate of expansion
and anisotropy. The physical parameters such as energy density, pressure, and
shear scalar become insignificant at large time. The model is stable.
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I'MITEPIIOBEPXHOCTHAA OJAHOPOJHAA
KOCMOJIOI'MYECKASA MOIEJIb B
MOINOHUIIMPOBAHHOWM TEOPUMU I'PABUTALIUU

C..KATOPE', C.IL.ATKAP?, P.ix.BAKCH'

PaccmaTpuBaeTcs runeprioBepXHOCTHOE OIHOPOHOE MMPOCTPAHCTBO-BpeMS B
pamxax (R, T) TEOPUM TPAaBUTALMU TPYU HAIAYHMM MIEATBHON XHUIKOCTH.
IoryyeHp! TOYHBIE pELIEHUS YPAaBHEHMI MO TPY SKCITOHEHIMAIBHOM H
CTENTEHHOM 3aKOHaX OOBEMHBIX PAITOXEHHUNA. YPABHEHUS TIO/S pellieHbl TAKXKE
B TIPEINONIOXEHUH O MPOINMOPUHOHAIBHOCTH MEXIY CKAIAPOM CABMra ¢ M
CKISIpOM pavioxeHus 0. B skcnoHeHI MabHOM Moe M BeenieHHas mpH GO/BLIMX
BpeMeHax (roamHsis Boenennas) ctpeMUTCs cTarb M30TpOIHON. B paccMarpusaemoi
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Mojenu BceneHHas 3aMETHO ycKopseTcsl U pacumpserca. O6CyX1aloTcs Takke
hu3MHECKMEe ¥ NEOMETPUYECKME CBOMCTBA TIpeUTaracMoil MOIEIH.

KiioueBble CII0BA: OOHOPOOHbie 2UNEPROSEPXHOCMU: UOCANLHAR HCUOKOCHIb:
f (R, T) 2pasumauusn
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