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We study a hypersurface homogeneous space-time in the framework of the f(R ,T) 
theory o f gravitation in a presence o f perfect fluid. Exact solutions o f field equations are 
obtained for exponential and power law volumetric expansions. We also solve the field equations 
by assuming the proportionality relation between the shear scalar ( о ) and the expansion scalar 
( Ѳ). I t  is observed that in the exponential model, the universe approaches isotropy at large time 
(late universe). The investigated model is notably accelerating and expanding. The physical and 
geometrical properties o f the investigated model are also discussed.

Key words: Hypersurface homogeneous: perfect flu id : f(R , T ) gravity

1. In tro d u c tio n . Recent observational data regarding high red shift from 
the Type la  supernova and cosmic microwave background anisotropy indicate 
that the universe is accelerating [1-4]. The explanation o f the late time 
accelerated expansion o f the universe as w ell as the existence o f dark energy 
(D E) and dark m atter (D M ) have received considerable attention. From past 
few decades, the general theory o f relativity has been modified in  several ways 
to consider natural gravitation as viable alternative to DE [5]. These modified 
theories are obtained by modifying the E instein-H ilbert action in the general 
theory o f re lativity, because it provides a mean fo r understanding the problem 
o f DE as w ell as the possibility fo r reconstructing the gravitational field theory 
potentia lly  reproducing late- time acceleration. Among the various modifications 
the f(R )  theory o f gravity is most suitable to  explain the exact nature o f 
accelerated expansion o f the universe. The f(R )  theory provides a natural 
unification o f early- tim e in fla tion  and late -tim e acceleration [6]. Modified 
gravity can be categorized in to  several classes, including f(G ) gravity, f(R , G) 
gravity, / ( r )  gravity and f(R , T ) gravity.

Bertolam i et al. [7] proposed a new class o f modified theories o f gravity 
by exp lic itly coupling the arbitrary function o f the Ricci scalar (R ) w ith matter 
Lagrangian density L m. Herko et al. [8] extended this model by coupling 
geometry and matter. The /( л ,Г )  gravity is a modification o f the f(R )
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theory, where T dependence is induced by quantum effects or exotic non-ideal 
matter configurations [9]. The f(R , t ) action [8] is given as follows:

where f(R , T) is an arbitrary function of the (R) and (7) the energy tensor 
of the matter T. and Lm represents matter Lagrangian density. Harko et al. 
[81 derived the field equations of f(R , Г) gravity by varying the action S of 
the gravitational field with respect to the metric tensor components g...

In the f(R , T) theory of gravity, the variation of the matter -energy tensor 
can be considered with respect to the metric. Therefore, reconstructing the 
Friedman-Robertson-Walker (FRW) cosmologies as an appropriate choice of 
the function /( r )  is possible. Moreover, Azizi [10] studied the wormhole 
solutions in the framework of f(R ,T ) gravity. Naidu et a l.[ll] explored the 
FRW space time in relation to the f(R , t ). Reddy, Kumar [12] considered 
the LRS Bianchi type II space-time with the perfect fluid in the framework 
of the f(R , T) gravity. A spherically symmetric fluid cosmological model with 
an anisotropic stress tensor in general relativity was studied by Pawar et al. 
[13]. Sharif et al. [14] investigated the energy condition in the /(.R,T) gravity 
for the FRW universe with the perfect fluid. Jamil et al. [15] reconstructed 
cosmological models in the context of f(R , T) gravity and demonstrated that 
the dust fluid reproduces the ACDM, non-phantom era and phantom 
cosmology. Houndjo [16] investigated the cosmological models by using the 
function f{R ,t ) = /{ r)+ f 2{T) in /(.R,T) gravity. Myrzakulov [17] studied 
metric-dependent torsion with the f{R ,T ) theory o f gravity and derived a 
model from the geometrical viewpoint. Motivated by the aforementioned 
studies, we studied the hypersurface homogeneous space-time in the f(R , T) 
theory of gravity.

2. The f(R ։T) theory o f g ra v ity  and fie ld  equations. The stress 
energy tensor of the matter is as follows:

Hence, we obtain the field equations of the f(R , T) gravity model as follows:

(1)

(2)

= 8»Гг / г («,Г)Гг / г (Л ,Г)Ѳ ,, (3)

derivative.
We assume the function f(R , T) is given by

, V is the covariant
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/(Л ,Г)=Л +2/,(г ), (4)
where the / j( r )  is an arbitrary function of the trace T. Recently, Chaubey, 
Shukla [18] discussed the Bianchi type I space time in the context of the 
f(R , T) theory of gravitation using the special form of the average scale factor 
and obtained a new class of the cosmological models. Ram et al. [19] obtained
a new class of exact solutions of the Bianchi type cosmological models in the
presence of a perfect fluid for particular choice of the f(R , t )= R+ 2XT, where 
X is a constant.

We consider the hypersurface homogeneous space-time as follows
ds2 =  - d t2+ A 2(t)dx2+ B 2(t)[dy2+ S 2(y,k)dz2], (5)

where k )= s in y ,y ,sinhу for к = \ ,  0, -1 respectively. A{t), B(t) are the
cosmic scale functions. The hypersurface homogeneous space-time is cosmologically 
crucial. Ram, Verma [20] studied the hypersurface homogeneous space-time 
with a bulk viscous term and found some exact solutions. Reddy et al. [21] 
studied the Kantowski- Sachs space-time in the presence of a massless scalar 
field with a flat potential. Katore [22] investigated the magnetized Kantowski- 
Sachs inflationary cosmological model in the presence of a mass less scalar 
field with a flat potential.

The energy momentum tensor for perfect fluid is given as follows:
=(p + p)ul* J+ p g jj, (6)

where p is the energy density of the fluid, P is the pressure. u‘ represents the
four velocity vector of the fluid, with components (0, 0, 0.1) satisfying ս,ս ' = - 1.
The equation of state of a perfect fluid is p = yp with у e [o, l ] . The condition
0 < у < 1 is necessary for the existence of local mechanical stability. Here, the 
matter Lagrangian can be taken as Lm= -  p- Further, we choose

I  (Г)=ц7\ (7)
The corresponding field equations for the metric (7) can be written as follows: 

֊ I+ ^ '+ -3 - = (8я+2v)p+ Խ ՜  W>). (8)
о  В  В

+ գ  + = + 2 [і)р+  (5|1 р -  ц р ), (9)
л  о АН

"(8я + 2^)р+Ыр՜  мр)» (Ю)AJS В  В
where the subscript "4" is used to denote the differentiation with respect to time t  

The volume of the universe is given as follows:
V = AB2. (11)

From equations (8), (9) and (10), we obtain
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A В
(12)

where A. represents a constant of integration.
The directional Hubble parameter in the direction of the x, у and z axes 

are Hx, Hy , H։ respectively defined as follows:

where Ht (i=  1, 2, 3) are the directional Hubble parameters in the direction 
of the X, у and z axes respectively. The expansion scalar ( Ѳ) and shear scalar 
(o ) are defined as follows:

Now, we have the three independent equations (8)-(10) in four unknowns P, p,
A, B. For complete determinacy of the system, we consider two volumetric 
expansions namely, exponential and power law [25]. Because, the law of variation 
for the Hubble parameter proposed by Berman yields a constant value of the 
deceleration parameter. This law is not consistent with our observations. Thus, a 
new variation of the Hubble parameter is proposed, which led the two volumetric 
expansions [25]. The volumetric expansions are as follows [23,24]:

(13)

The mean Hubble parameter is given by the following:

(14)

The anisotropy parameter is defined as follows:

(15)

(16)

Taking k=0, the equation (12) leads to
AL _B± = X 
A В V ՛ 

Further, integration of equation (18) gives us

(18)

(19)

(20)

Ѵ = сг ։ і т , (21)
where cv cv I and m are aibitraiy positive constants. When 0<m< 1, the power 
law model yields the constant deceleration parameter q, whereas when m > 1
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it  yields accelerated expansion. Notably we get an inflationary universe for 
<7=0 and m— 1. The exponential expansion model reveals accelerating volumetric 
expansion.

3. Exponential expansion model. Considering equation (19) for the 
volumetric exponential expansion from equation (20), we obtain

в exp It- 2Ճ .-3 ft

В ш \±
1/3

exp lt+
9 mc-y

(22)

(23)

Clearly from equations (22) and (23), in the early stage of the universe, the 
values of scale factors of the universe are approximately constant and increased 
very slowly for />0. At a specific time, the universe suddenly exploded and 
expanded to large extent, which is consistent with the Big Bang scenario. A 
similar result was obtained by Singh and Beesham [24], as well as Katore, 
Hatkar [26].

Using equation (8) and with the help of equations (22) and (23), the energy 
density and pressure are as follows:

P =
15/
I6n

312 
16tc

5АГ
48nci

48ясо

.-6ft

- 6 f t

(24)

(25)

From equations (24) and (25), we observe that p > 0, p > 0 for a specific 
constant. Notably, the energy density is a decreasing function of time (see

Cosmic tim e

F ig.l. Plot o f energy density fo r I = c2=X = 1.
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F ig.l). The model behaves like a steady - state model o f the universe at large 
time. This is analogous to the findings o f Das, Sarma [21]. In literature, the 
stability of the model was investigated using the sign of the ratio dP/dp. 
Stability occurs when the ratio d P /d p  is positive. Here, the ratio is 
dP /d  p = 1/5 > 0; therefore, model is stable.

The expansion scalar (Ѳ ), shear scalar (o ), deceleration parameter (q) are 
obtained as follows:

The deceleration parameter from equation (28) indicates that the universe 
is accelerating. The value o f the expansion scalar is constant; that is the rate 
of expansion of the universe is constant. At the early stages o f the evolution 
of the universe the ratio o f the shear scalar to the expansion scalar was non­
zero and as the time increases, it tended to be zero, which means the universe 
was in itia lly anisotropic whereas at a late time, it approached isotropy. The

Hawkins [28], is satisfied by the present model. The results are similar to those 
o f Singh and Beesham [24], Katore and Hatkar [26], and Adhav [29].

4. Power Law  m odel. By considering equation (19) for power law 
volumetric expansion in equation (21), we obtain the following:

The expressions (29) and (30), show that A and В vanish at /= 0 . Hence, 
the model has in itia l singularity. Afterward, A and В increase indefinitely with 
the passage of time, which is in complete agreement with the Big- Bang model 
o f the universe. The model is similar to those of Akarsu and K ilinc [23], and 
Adhav [19]. Moreover, the solution of the field equations is obtained for 
у = 0.2. Depending on its numerical values, у describes the dust universe 
(y  = 0 ), radiation universe (y = 1/3), hard universe (y e (l/3 ,l)), Zeldovich 
universe or s tiff fluid ( у = 1) [30]. Therefore, in this model, у = 0.2 represents 
the inflationary universe.

The energy density and pressure are obtained as follows:

0=3/, (26)
2 _  X  -Эй a = —j=—e (27)л/3с2 

q = - 1. (28)

condition of homogeneity and isotropy that is lim  — = 0 formulated by Collins,
І-Х »  0

(29)

(30)

3(8я + 2ц)/2 ’ (31)
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f c - i)
(32)

Clearly, from equations (31) and (32), p > 0 , p>0 the energy density 
is a decreasing function o f time. The energy density was very large at the early 
stages o f the evolution of the universe and as the time increases, it tends to 
zero. Thus, the universe may be empty in the far future. A similar result 
was obtained by Singh [25]. In  the present model, the ratio is dP/d p = 1/5 > 0; 
therefore the model is stable. The behavior o f energy density is depicted for 
the appropriate choice of physical parameters and integration constants in Fig.2.
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Fig.2. Plot o f energy density fo r X = 2 , ц  = 1.

The expansion scalar ( Ѳ), shear scalar ( a ), and deceleration parameter (q) 
have the following expressions

1 3 m
. (33)

՞ ՜ Ք հ ՝ <*>
9 = 2- (35)

The ratio o f the shear scalar to the expansion scalar indicates that at the 
early epoch, the universe was anisotropic and as time passes, it approaches 
isotropy. The universe has singularity at /= 0 . It starts with an infinite rate 
o f expansion and an infinite measure o f anisotropy. For large time, that is 
as t -» °°, the shear becomes insignificant. The condition of homogeneity and
isotropy that is 1іт(ст/Ѳ) = 0 , formulated by Collins and Hawkins [28] is

/-4ՇՕ
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satisfied in the present model. The observations by the differential radiometers 
on the NASA's Cosmic Background Explorer registered anisotropy in various 
angle scales. These anisotropies are believed to contain the entire history of 
cosmic evolution, including the recombination, and are considered indicative 
of the geometiy and the material composing the universe. The theoretical 
arguments [31] and modem experimental data support the existence of an 
anisotropic phase, which is transformed into an isotropic one [32]. Our 
investigations indicate that the deceleration parameter is positive; that is, the 
universe was decelerating at the time of inflation; this is in accordance with 
modem cosmological observations [1-2].

5. M odel I I I .  In this model, we have assumed the proportionality relation 
of the shear scalar and the expansion scalar for solving the field equations. 
The work of Thome [33] explains the reasons for the assumption. The 
observations of the velocity redshift relation for extragalactic sources suggest that 
the Hubble expansion of the universe is isotropic today within approximately 
30%. More precisely, the redshift studies 4im it the ratio of the shear scalar 
to the Hubble constant to a /tf £ 0.3 in the neighborhood of our galaxy [34- 
36]. In this connection, [37] pointed out that for the LRS type spatially 
homogeneous space-time, the normal congruence to the homogeneous hypersurface 
satisfy the condition ст/Ѳ as constant. Many authors have used this relation 
to obtain solutions of the field equations [27,38]. This leads to

A = Bn . (36)
Using equations (8),(9) and (36), we get

շ̂ +շ(ո+ւ)ճ=_1ճ_. В
Equation (37) further reduces to

B l = ֊  + CB-2*-2, (38)
n —1

where С is a constant of integration.
Subcase I. С — 0.
From Eq. (38) for C— 0, we yield

Ы М и  (з9)

B = y ֊ f V  (40)

From equations (39) and (40), for n * ± \ ,  A, В vanish at /= 0 , thereafter,
they start evolving as time increases and finally, they diverge at large time. 
The results are similar to those of Akarsu and Kilinc [23], and Adhav [29].
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Moreover, the values of the scalar factors also vanish for k=  0. Thus, this model 
does not admit solution for k =  0.

The energy density of the model is calculated as follows:

P = 8яу + 7цу-ц (41)

where n = ц -8яу + 7цу
2у(4я+ (i)

The expression of energy density obtained in equation (41) shows that it 
is a decreasing function of time. The energy condition, that is p > 0 is satisfied. 
In case of dust fluid у = 0, the value of density is positive infin ite for ц < 0. 
Furthermore, it is large at /=0 and it tends to be zero at large time. Therefore, 
the universe may be empty in the far future [25]. The behavior for a suitable 
physical parameter and other constant, is depicted in the Fig.3.

The volume (V), expansion scalar (Ѳ), shear scalar (a), deceleration 
parameter (q) become

ѵ(и+2)/2

V =

0 3(/H-2)_

S t ’

n+2

(42)

(43)

(44)

(45)

Fig.3. Plot o f energy density for у = 1, 1/3, ц = 1
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The volume of the universe is clearly an increasing function of time t. The 
universe evolves with an infinite rate of expansion and anisotropy. Thus, the 
model represents the early era of the evolution o f the universe. This is consistent 
with the Big Bang model of the universe. The shear scalar becomes insignificant 
as t -> oo. Furthermore, the anisotropy is maintained throughout the evolution 
of the universe. From Fig.4, the sign of the deceleration parameter is negative 
and positive for the value o f n<-2, -1 <л and -2 < n < - l respectively.

ag
rij
jg)0)О
Ճ

Fig.4. Plot of deceleration parameter.

Subcase II. С * 0.
From equation (38) for С *  0 , we obtain

A = ((n+ 2 )c Y {՝n+2) , (46)

B = {{n+ 2 )c fn+2)№ +2l  (47)
The value of A and В vanish at /=0, they start evolving with the passage 

of time and as / —> oo, they diverge, which is consistent w ith the Big Bang 
model. This solution o f the field equations is subjected to the condition
& = О, у = 0.2. Thus, the model represents the inflationary universe.

The energy density and pressure are obtained as follows

I  ш мШ І 1 i
p Աօ֊տ^յ^+շ)2 /| ՚ (48)

2л+1 1 1
P U o ֊8TtJ(„+2)J է2 ' <49)

For an appropriate choice of physical parameters and other integration
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constant, the energy density should be a decreasing function of time (see Fig.5). 
The energy conditions p > 0 , p > 0 are satisfied. The energy density at the 
early epoch was large and as time increases, it gradually decreases, approaching 
a constant value. Thus, the universe may be in a steady state in the far future. 
In that case, we obtain the same result as that obtained in the study by Das 
and Sarma [27]. In  this model, the ratio is dP/dp = 1/5 > 0; that is the model 
is stable.

Ծ*
•сUi

Cosmic time 

Fig.5. Plot o f energy density.

The volume V, expansion scalar Ѳ, shear scalar о , deceleration parameter 
q for this model are obtained as follows;

V=(n+2)Ct, (50)

0=-,
t (51)

(52)

(53)

CT_ (n ֊2)
fi( n + 2 ) t’ 

t g l
From equation (50), the volume of the universe is clearly an increasing 
function o f time. The expansion scalar in equation (51) shows that the rate 
of expansion is a decreasing function of time. The ratio of the shear scalar 
to the expansion scalar is non zero; therefore, the universe is anisotropic. The 
value o f the deceleration parameter is positive; that is the universe is decelerating. 
The present model is consistent with recent observational data [1,33,39].

6 . Conclusion. In the present paper, we investigated perfect fluid cosmological
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model in the f(R , t ) theory o f gravitation framework for the hypersurface 
homogeneous space-time. Under some specific choices of the parameters, in 
the exponential expansion model, the rate o f expansion o f the universe is 
constant. The universe is accelerating. The universe approaches isotropy at large 
time. In the power law model, we obtained inflationary decelerating universe. 
The present models are consistent with the Big Bang model. The condition 
o f homogeneity and isotropization formulated by Collins and Hawkins [28], 
is satisfied by the aforementioned models. The models are valid only for 
k=0.  Both the models are stable.

In subcase I o f the model III, the anisotropy o f the universe is maintained 
throughout the evolution. The universe is accelerating for л <-2, -1<л and 
decelerating for -2< л< - l.The model is not valid for k =  0. While in the sub 
case II o f model III, the universe is inflationary. The model has in itia l 
singularity at /= 0  and the universe evolves w ith an infinite rate o f expansion 
and anisotropy. The physical parameters such as energy density, pressure, and 
shear scalar become insignificant at large time. The model is stable.
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ГИ П ЕРП О ВЕРХН О С ТН АЯ  О ДН О РО ДН АЯ 
КО С М О Л О ГИ Ч Е С КА Я  М О ДЕЛ Ь В 

М О Д И Ф И Ц И Р О В А Н Н О Й  ТЕ О Р И И  ГР А В И Т А Ц И И

С.Д.КАТОРЕ1, С.П.АТКАР2, Р.Дж.БАКСИ1

Рассматривается гиперповерхносгное однородное пространство-время в 
рамках f(R , т ) теории гравитации при наличии идеальной жидкости. 
Получены точные решения уравнений поля при экспоненциальном и 
степенном законах объемных разложений. Уравнения поля решены также 
в предположении о пропорциональности между скаляром сдвига а и 
скаляром разложения Ѳ. В экспоненциальной модели Вселенная при больших 
временах (поздняя Вселенная) стремится стать изотропной. В рассматриваемой

mailto:katoresd@rediffniail.com
mailto:rasrjb@gmail.com
mailto:schnhatkar@gmail.com
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модели Вселенная заметно ускоряется и расширяется. Обсуждаются также 
физические и геометрические свойства предлагаемой модели.

Ключевые слова: однородные гиперповерхности: идеальная жидкость: 
А к т ) гравитация
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