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The spherical isothermal Lanc-Emden equation is a second arder non-linear differential
equation that mode! many configurations in astrophysics. Using the fractal index techmque and
the power series expansion, the fractiopal Lane-Emden equation involving the modified Ru
emann-Liouwile derivative is solved. The results indicate that the serics converges over the range
of adu 0<x <2200 for a wide spread of values for the fractional parameter ¢ . Cormpanson
with the numerical solution reveals good agreement with a maximum relatve error aof 0.05
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1. Introduction. The isothermal Lane-Emden equation is often consid
ered the asymptotic limit of the Lane-Emden equation where the polytropic
index is taken to be very large. The self-gravitational isothermal gas sphere has
been useful in many areas of astrophysics, such as stellar structure, star clusters,
galaxies and galactic clusters [1-2].

Many numerical and analytical methods have been proposed in deriving
solutions of the equations describing the isothermal gas spherc. These can be
found in [3-8].

In the past two decades, therc has been a surge of interest in studying
fractional differential equations (FDEs) which appear in many branches of the
sciences such as mathematics, chemustry, optics, plasmas, fluid dynamics, and
engineering. Applications of fractional calculus and FDEs examples include:
dielectric relaxation phenomena in polymeric materials [9], transport of passive
tracers carried by fluid flow in a porous medium in groundwater hydrology | 0],
transport dynamics in systems governed by anomalous diffusion [11,12], and
long-time memory in financial time serdes [13]. Hence 1t is very important
to find efficient methods for sotving FDEs. Finding analytical and approximate
solutions of FDEs are two of the more useful approaches in understanding the
physical mechanism of natural phenomenon and dynamical processes modeled
by FDEs [14-17]

In the present paper, we introduce a new analytical solution of the equation
governing the isothermal gas sphere. We derive a recurrence relation for the
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coefficients in a power series expansion of the solution of the fractional
isothermal Lane-Emden equation. To the best of our knowledge, this 1s the
first work dealing with the series solution of the fractional isothermal Lane-
Emden equation.

The structure of the paper is as follows. In Section 2, some basic concepts
of fractional calculus are introduced. The series solulion to the fractional
isothermal gas-sphere equation is described in Section 3. Section 4 is devoted
to numerical results. Section 5 summarizes the conclusions reached.

2. Basics of Fractional Caiculus. Fractional calculus generalizes
notions of ordinary calculus. Depending on the definition and properties of the
fractional derivative, there are many kinds of fractional calculus, such as
Riemann-Liouville, Caputo, Kolwankar-Gangal, Oldham-Spanier, Miller-Ross,
Cresson, Grunwald-Letnikov, and modified Riemann-Liouville [18-20].

We start by recalling the Jumarie modification of the Riemann-Liouville
derivative, [21-25]. Assume that f:R —)R,x—-)f(x) denoles a conlinuous
function, and let 4 denole a constant discretization span; the limit form of
the modified Riemann-Liouville derivative is defined as
a*[flx)- rlo)]

o :

' *'(x) = lim Oca<l,

hel

where

o R ga-” o= 5
A f(x)“Z( 1)‘ r“.”r(u_*.”[lnh “b]

This is analogous to the standard derivative {calculus for beginners), and gives
the a -order derivative of a constant as zero. The integral form of the modified
Riemann-Liouville derivative is

g

= )jt,z 8 re)- slo)es, a<0
i d i
D? fix) £y : <a<
D f o ”m{« s lrg)- rloas, D<a<l )
T

f(x— e " re)- s0)ds, n<a<na+l, n>1.

(1]

Ma-a)d*

Other useful Jumane modified formulae are

A bl ove
My+l-a)

DMef(x)) = cDg f{x), &)

Di{f(x)e(x)] - g(x)D2 f{x)+ f(x)Dfglx), @

Dl x’ v>0, 2
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D; flg(x)]= £, [elx)]0; glx). )
D} flg(x)l- Dg f[e(:)le. . ®)
where ¢ is a constant. Egs. (4)-(6) are direct resulls from
D f(x)=T(a +1)D, f(x). 0
[26] modified the chain rule, Eq. (5) 10
D; flglx))=o. £,[e(x)] D¢ g(x). (8)

where o, is called the fractal index, which is usually determined in terms
of gamma functions |26-28). Therefore, Egs. (4) and (6) are modified to give

D;Lr(x)g(x)- o, {g(x) D2 £(x)+ 7(x)D7(x)] ®)
D} flg(x)]=a, D2 ez, * (10)

Throughout this manuscript, we use Eq. (8) to solve the fractional isothermal
Lane- Emden equation.

3. Computationa! Developments.

3.1. Isothermal Lane-Emden Equation. The Lane-Emden equation
for an isothermal gas sphere 1], can be written as

2
d
du.Zu_r. (an

' xdx
with the initial conditions
du
u(0)=0. — -o0. 12
d-‘l.:o { )
The power series solution of Eq. (11) has the form [6)
2 4 & 8
ufx)= e+ it + (13)
6 120 1890 1632960

The fractional isothermal Lane-Emden equation, which is the generalizalion
of the isothermal Lane-Emden equation (11) can be written as

x22 DD+ 2x°Dlu+ xe ™ =0, (14)
with the initial conditions
u(0)=0. D?u(0)=0. (15)
where u = u(x) is the unknown function, D’ is the modified Riemann
Liouville denvalive and ™ = i“%“
=0

3.2, Series Solution of Eq. (14). With the (ransform X = 1%, we
assume the solution could be expressed as a series,
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u(X)= 3 A X" = A+ AX+ X+ AX P+ A X+ A X+
m=0 (16)
= Aot AKX+ A X AX T AX 4 AX T

The first initial condition of Eq. (15) gives u(0)= A, or A, =0. Applying Egs.
(2) and (4) to Eq. (16), we have

Dfu D:Aq+ D:’(Al)(“ )+ D'(A X20)+Dn(A)X!n)+ DG(A‘XIQ)_’_
Ao tp™ Aﬂ’a'lh“‘

Du XSn 04+ Aldasipx™
+Dr (X )s Ma+l-a) = TRa+l-a) a9
la-a 2a
. M3a+1)x o AT+ AT(2a+1)x* A,l'(]a+|)x .
Ga+l-a) Ma+1) 2a+1)
Applying the second initial condition of Eq. (15) gives
Du{0)=AT(@+1), or A4 =0. (18)
Now suppose that
G(X)= Y 0. X" =0+ QX+ 0, X+ O, X*+ 0, X+ O, X5+ . (19)
ma0
By putting
e = Glx), (20)
we have
e -Go)=1, o Q=1
o f \‘"k
First, we focus on determining the fractional derivative of e “ = Z' f—"*--t

Taking the fractional derivative on both sides, the fractional denvauvc of v’ is
2

considered as & times u; similarly «’ will be considered as u times u’, etc.
Therefore,
a » (. k-1 yo
Dre* w D Z.‘ nru Z( |YD z( W k' DRy
| 4+0 et ) k!
® 1 1 &1
z I)‘u D“u:_r y Z‘ 1) 725[),,"‘-( 1)) u' e
k: (k- l)! k=i (" 1 - S
which can be written in the form
GDMu=-DJG . 1)

Differentiating both sides of Eq. (21) k times with the a -derivative, we have

p: prloonu]- b D2(D26). o S(theUVGeN —gette.

nmes & broes
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Al x=0,
g(t Juot 00)G"* (o) - ~6°*(o). >
As
u"u°')(0)=A,.dl"((}+l)u+l), G“("”J(O}=Ql,,l‘((k~ j}dﬁ’l)“
G**(0)= 0, T({k+a+1),
we have
t‘u'"ﬂb’l)‘“'m“’r“ﬁ. fla+1) -0, Tl 1)+ 1)
Me- 1y
That is,
kA, T+ a1, | T(k-j)e+1)
Q=5 i )
and seiting {=%+1, then
-1y LA, TG+ )a+ 00, (-1 o)
o‘.-l"(lud—l),_o*‘ 1=y
Ifi=5+1
0= {i-1) & A,l'(:aH)Q, T )a+)
T orla+ )5 - (- i) (23)
Hence,
A,=0, A4=1 0 -1 @-=0 (24)
Alternatively, DJu can be written as
a1 Fla=+l P
Dfu:iA_o_mX F(%:l '~)ajx
- w1 o+? IFma+1
T e r(a{n )a)ml"(u+f)l"(mq)+l a) -
T AR 1_Tma+l)
— 1(ma +| ~a}
where the fraclal index o, (see example 6 in [28]) is given by
Ima+1)

e ml'(u+l]'(ma+l¥a.)
Also, we have
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[ima+1) Tla+))
l‘(ma+l~a)l‘(a+l—u)

D2D%u - ZA,,u (m-1)x""*

L -2 Al I)l ma 1) No+l) l'((m I)u+|) (26)
ZX Mma+l- u) Mo+1-a)(m- l]‘(a*flr((m l)u+1_a)
-z A I‘(mu+l)

with the [ractal index o, (see example 6 in {28]) is given by

5 Tn-Das)
Y m- (a1 (- 41 -a)

Substituting Egs. (19), (25). and (26) into Eq. (14) yields

mu+172ct)

2 2 A,.L(”'“*” x° 1 4.1-(”"3'71)
x _ZXW l"lma+lf—2a) ,,,z_;x"— l'{ma+l a) o

I+ZQ,,X"]
oy AT Ima 1) 2' 2A,.F(mu+') f 23 Zg,x*]
2 ) &Y Hmasica) |F e

= Tima+l-2a
ZY“”A'"‘ 2T+ 2)ox+1) .iwzm W

Il ma+|) l'(mo.+l+d.

Equating the coelficients of X? and X™7?, we get
_ Ta+)
2o+ )[r({@+1)+2)] (28
and
T{ma +l)l‘((m+ Do +1)
o2 T{(m+ Ua + ) (m+ 2)a + 1)+ 2T(ma + D ({m+ 2)a + I)Q"' G

Egs. (23) and (29) arc the recurrence relations of the power series expansion,
Eq. (16)

4. Results. We claborated a FORTRAN code 1o calculate the scries
coeflicients for the range 0 < x< 2200, this range covers that used in |29]. We
ran the code with a step Aa =0.05 10 encompass a large range of values for
the fractional parameters a and varied the number of series terms until we
obtained the minimum value of the relative error.

Fig.1 plots the Emden function & versus x. Fig.2 shows the variation of
the relative error with x; the maximum relative error is about 0.05, indicaling
good accuracy. The varation of a is plotted in Fig 3. Generally, as x increases,
we see the a paramcier decrease excepl for some intermediate values. This
result shows the highly dependent nawure of the convergence on @ . The
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number of series terms required 10 obtain a solution with suitable relative error
is lower than that of the accelerated series solution of [6] by more than 50%

144
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Fig 1. The Emden function u versus x the radius of the isothermal gas sphere
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Fig.2. Absolute relative errors for the Emden function u
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Fig.3 Vanauon of the fracional parameter a with x the radius of the isothermal gas
sphere.

5. Conciusion. We derived a power series solulion for the fractional
isothermal Lane-Emden equation. Two recurrence relations are derived and
sclved simultaneously. The fractal index is deduced for each term in the
expansion By running code set with a small step for the fractional parameler
a , we explored the effects of this facior on the accuracy of the calculations.
The series reached the surface of the sphere faster when applying a , which
may be viewed as an accelerator of the series. We found that the range of a
spreads over the entire range 0 <a <1. The results show thal the maximum
relative error is 0.05 indicating good agreement with numerical values. An
application of the procedure on the first-lype Lane-Emden equation (polytropic
gas sphere) remains an open problem.
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Appendix
We shall now determine some of the coefficients in the series expansion
of Eq (16). By putting /=2 in Eq. (23) and using Eq. (28) for A,, we obtain
(2-1) z AT(ia+1)Q, T(2-1)a+1)
M2a+1)% (i-z-4)
L N— [A, MNa+No M(a+1) 4,T(a-1)g,r()

z?

r2a+1) o:(1): 1o} Al
& S l'(uil) N
e+ [{a+1)+2)]
Putting m=1 in Eq. (29), we have
okl Ta+Nr{2a+1) 0
I{2a + 1FBa+1)+ 2 (e + Jr3a +1)" (A2)
as Q =0. It follows that A, =0. Again, using Eq. (23) with /=3, we have
0, - 21 4. I'(({'-v l)q+!)7Qz, T((2 - j)a+1)
> Ba+)S M2
20 [(AT(e+)0,TRa+1) 4112 - :l(‘l Has)),
I(3a+1) 2 11
 ATBar1)g, |
T
To calculate A,, we put m=2 in Eq. (29) and using O, from Eq. (Al) gives
iy Tla+)r(2a+1rB3a+1}
A = T@a+ 1 @a +1)Ba+ 1)+ 2r@2a + (e +1)+ 2] Ah
Proceeding as above, we next obtain
Il +1) (a+1) I3 +1) _
Q. Maa +1)[ra + 1)+ 2] [ra+1) +j [MBa +1)- W2a+1)]| A
A =0,
Qs=0
I'(a +1)r(5a +1) "
“ T(6a + DfT{{ + 1)+ 2)][T(5c + 1)+ 2T (30 +1)]

" (e +1) r(3a+1) (A6)
Ma+1)+2 [Ba+1)+2rQ2a+1)}

Now putting a=1 in Eqs. (Al)-(A6), we get the coefficient of the senes
expansion, Eq. (16), as
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| ! ]
=0, A =0, 4, ==, A =0, Ay=— S R
4 ! 156 9 1200 °° 1890

which is the same as the senes solution of Eq. (12).
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[MTPUBJINXKEHHOE PELLIEHHUE NPOBHOIO
YPABHEHHSA JIAHE-EMJIEHA BTOPOI'O POZA

E.A-B.ABJE/1-CATIAM, M. M HOYX

Cepryeckoe H3oTepmuueckoe yparHeiive JlaHe- EMneHa npeacranngeT coboi
He TMHeHHoe IMdxpepe HIMaTLHOE YpaBHEHNE BTOPOrO NMOPSUIKA U MORETUPYeT
MHOTUe acTpoduBrieckue KoHpUTypaivm, [losayack MeTofoM ApoGHOIO MHAEKCa
W PaXIOXEHHEM B PN MO CTENEHAM, peliaeTcs ypanHenue Jlane-Emuena,
conepxalitee MOTMGOULIMPOBAHHYIO MPOW3IBOIHYI0 PuMana-JInyerin. Peaysrarat
[MOKA3LIBAKOT, YTO PAA CXOOUTCA B MHTEPBA1e JHAYEHMH paanycon 0 € x < 2200
1S WwHpokoro Habopa 3HaYeHHH nmapaMeTpa a . CpaBHEHHE € YHCIEHHBIM
PELICHUEM TOKAIBIBAET XOPOLIee COTIACHe ¢ MAKCHMAIBHON OTHOCHTEILHOMN
ommbko#, pasHoM 0.05

Knouensle cnoBa: uzomepmuneckuil 2as: dpobiusiii undexc: Herunelinoe dpobroe
dughepenyuaishoe ypasuenue: noouPuURLPosannoe npou3-
600noe Pumana-/Tuysuin
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