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A method is proposed to compute the eigenfrequencies of small adiabatic pseudo-radial 
modes of oscillations of differentially rotating and tidally distorted stellar models by taking into 
effect of mass variation on its equipotential surface inside the stars. The developed approach has 
been used to compute certain radial modes of oscillations of polytropic models with polytropic 
indices 1.5, 3.0 and 4.0. The results obtained have been compared with results earlier obtained 
devoid of taking into account the mass variation. Certain conclusions based on this study have 
been drawn.
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1. Introduction. The mathematical problem for determining the eigen­
frequencies of oscillations of a rotating star is much intricate. Approximate 
methods have, therefore, been often used in the literature to study such 
problems. Most of the authors such as Clement [1], Kochar and Trehan [2], 
Mohan and Saxena [3], Soofi et al. [4], Dintrans and Rieutord [5], Reese et 
al. [6], and Lovekin and Deupree [7], have studied the oscillations of stars 
assuming the-star to have solid body rotation and therefore, rotating uniformly. 
However, some authors such as Ireland [8], Woodard [9], Dziembowski and 
Goode [10], Mohan et al. [11,12], Lal et al. [13], Karino and Eriguchi [14] 
and Lovekin et al. [15], Kumar et al. [16] addressed themselves to the problems 
of differentially rotating stars also. Lal et al. [17] have also discussed the 
structure and oscillations of polytropic model by taking effects of Coriolis force 
on the stars. Saini et al. [18] and Kumar et al. [19] have obtained the 
significant conclusions about the structure of rotationally and tidally distorted 
stars. Mohan et al. [20] and Kumar et al. [21] studied the barotropic 
oscillations of differentially rotating and tidally distorted stars and differentially 
rotating Roche-models, respectively. Their results give some ideas about the 
structures and oscillations of realistic stars.

In the present paper we have computed the eigenfrequencies of pseudo­
radial modes of oscillations of polytropic models of stars including mass 
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variation inside the stars rotating differentially. In the case of gaseous spheres, 
undergoing periodic oscillations, two types of modes of oscillations to be 
generated. One of these is called radial modes of oscillation (in which the fluid 
elements oscillate in the radial direction only) and the other non-radial modes 
(in which fluid elements oscillate in arbitrary directions). It is expected that 
in rotating stars, (in which angular velocity of rotation is not too large) these 
types of modes are still excited but their eigenvalues are get influenced by 
rotation effects.

The paper is organized as follows: In Section 2, an eigenvalues boundary 
value problem for determining the eigenfrequencies of small adiabatic pseudo­
radial modes of oscillations of a differentially rotating polytropic model of a 
star is mentioned. Numerical computations have then been performed in 
Section 3 to determine the eigenfrequencies of pseudo-radial modes of oscil­
lations of certain differentially rotating polytropic models of stars at indices 1.5, 
3.0 and 4.0. The calculated distorted radii of some polytropic models of stars 
are given in Section 4. The eigenfrequencies, thus computed, have been 
compared with the earlier results obtained by Lal et al. [13] without taking 
the effect of mass variation.

2. Eigenfrequencies of small adiabatic pseudo-radial modes of 
oscillations of differentially rotating polytropic models. Following 
Mohan et al. [11], an eigenvalue problem determining the eigenfrequencies of 
small adiabatic pseudo-radial modes of oscillations of a differentially rotating 
polytropic model of a star rotating differentially according to the law (1) may 
be expressed as:

where co*2 = 7?3r03Jc2/GA/0 and the expression for test of the symbols Hv 
H3, are given in the Appendix B, where as co*2 is the non-dimensional 
form of the actual eigenfrequency of oscillation a and C, denotes a suitable 
average of the relative amplitudes of pulsation of the fluid elements of the 
equipotential surfaces y = const. Also rQs is the value of r0 at the surface of 
the model, G universal gravitational constant, Mo the total mass of the star 
and R the radius of undistorted polytropic model (necessary details of Eq. (1) 
are given in the Appendix A for readers' reference).

Eq. (1) determines the eigenfrequencies of small adiabatic pseudo-radial 
modes of oscillation of differentially rotating polytropic models of stars rotating 
differentially according to the law co = ft1+h252 by taking the effect of mass 
variation inside the star.

3. Numerical evaluation of the eigenfrequencies. Eigenvalue prob­
lems developed in Sections 2 have been solved numerically to compute 
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eigenvalues of pseudo-radial modes of oscillations of certain differentially 
rotating polytropic models. The eigenvalue problem of Section 2 is of the 
Sturm-Liouville type. In order to compute the eigenfrequencies of small 
adiabatic pseudo-radial modes of oscillations of differentially rotating polytropic 
models, Eq. (1) has been integrated numerically subject to the boundary 
conditions which require C, being finite at points corresponding to the center 
and the free surface of the model. Computations are started with some trial 
values of co'2. For this chosen value of co’2 series solution was first developed 
at a point close, to the centre (x = 0.005). This solution is then used to carry 
the integration of the pulsation Eq. (1) outward using the fourth order Runge- 
Kutta method. Using the same numerical value of co'2, the series solution is 
also developed at points near the surface which is then used to carry the 
integration of Eq. (1) inward. The values of q(dq/dx}՜1 obtained from the 
outward and inward integrations of (1) is then matched at some preselected 
point in the interior of the model. The process is continued iteratively with 
different choices of the value of co'2, till a value of co'2 is found for which 
the two solutions agree to a specified accuracy.

In order to start integrations from points near the center and the surface, 
series solutions were developed at x=0.01 and x=0.99. Outward and inward 
integrations were performed using a step length of x=0.01. Trials with different 
values of co'2 were continued till the absolute difference in the value of 
g(dq/dx)՜՜' at the preselected point in the interior of the model from the 
outward and inward integrations was found to be less than 0.0005. Compu­
tations have been performed to compute the fundamental and the first mode 
of pseudo-radial oscillation of differentially rotating and tidally distorted poly­
tropic models of indices 1.5, 3.0, 4.0.

4. Observations. The values of distorted radii, due to the effect of 
differential rotation and tidal distortion, are calculated for different polytropic 
stellar models at different indices as mentioned in Table 1.

Table 1

DISTORTED RADII rOi OF CERTAIN DIFFERENTIALLY ROTATING 
AND TIDALLY DISTORTED STARS

Model Rotational and tidal distortion parameters at different polytropic indices
^2 Q 1.5 3.0 4.0

1 0.0000 0.0000 0.1000 0.499815 0.499935 0.499955
2 0.3162 0.0000 0.1000 0.496235 0.498620 0.499475
3 0.0000 0.3162 0.1000 0.499805 0.499936 0.499956
4 0.3162 0.3162 0.1000 0.495895 0.498510 0.499430
5 0.200Ö 0.0200 0.1000 0.498665 0.499500 0.499820
6 0.1000 -0.0600 0.1500 0.499245 0.499730 0.499850



322 S.SAINI ET AL.

5. Conclusion. The obtained results have been compared (Fig. 1-7) with 
the results obtained by Lal et al. [13]. Model 1 is non-rotating but tidally 
distorted, which gives largest radius in comparison of other models. Model 2 
is a solid body rotating under the effects of tidal distortion as well as mass 
variation. This gives largest radius in comparison of other differentially rotating 
and tidally distorted models, for polytropic index 2.0 but not for 3.0 and 4.0. 
Therefore, it may be concluded that the radius will be maximum for non­
rotating and tidally distorted stars. However, if it is rotating as a solid body 
then radius will be a large only for polytropic index 1.5 but less than from 
non-rotating. Model 4, has much distortion due to differential rotation in 
comparison of others, gives large radius for indices 3.0 and 4.0. Hence, a 
differentially rotating and tidally distorted stars increase their radii for higher 
polytropic indices with the effect of mass variation. It is also observed that radii 
vary much for index 1.5 but varies slightly for large index (such as 4.0).

Fig.2. Differentially rotating stellar models of polytropic index 1.5.
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Fig.3. Differentially rotating stellar models of polytropic index 1.5.

—— Effect of mass variation included ....... Effect of mass variation not included (Lal et al. [13])

Fig.4. Differentially rotating stellar models of polytropic index 3.0.

Fig.5. Differentially rotating stellar models of polytropic index 3.0.
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-------- Effect of mass variation included (Mohan et al. [11])

Fig.7. Differentially rotating stellar models of polytropic index 4.0.

It is noticed that the eigenfrequencies of fundamental mode of oscillations 
of non-rotating but tidally distorted star, decrease for index 1.5, due to the 
effect of mass variation but do not vary large for other indices. Similarly, first 
mode of oscillations does not vary. In case of solid body rotation and tidal 
distortion, eigenfrequencies decrease due to the effect of mass variation for each 
mode of oscillations. In case of mass variation, if the star is highly distorted 
by differential rotation, the eigenfrequencies increase in comparison to uni­
formly rotating stars. Model 4, has slightly fast differential rotations in 
comparison of other and also distorted by tidal distortion as well as mass 
variation, gives low eigenfrequencies for each mode of oscillations for each 
polytropic index. Model 6 does not give any fundamental mode of oscillations.
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Appendix
Eigenvalue boundary problems for computing pseudo-radial modes of 

oscillations of differentially rotating models

Mohan et al. [20] formulated eigenvalue problems which determine the 
eigenfrequencies of small adiabatic pseudo-radial and non-radial modes of 
oscillations of rotationally and tidally distorted stellar models. The approach 
was later used by Mohan et al. [11] and Lal et al. [13] to determine the 
eigenfrequencies of small adiabatic pseudo-radial and non-radial modes of 
oscillations of certain differentially rotating stars. In this section, we present 
in brief the approach adopted by Mohan et al. [11,20] to determine the 
eigenfrequencies of small adiabatic barotropic modes of oscillations of differ­
entially rotating and tidally distorted stars.

Al: Eigenvalue boundary problem determining the eigenfrequencies of small 
adiabatic barotropic pseudo-radial modes of oscillations of differentially rotating 
stars. Assuming that during the oscillations, the fluid elements on an equi­
potential surface oscillate in unison, the eigenfrequencies of small adiabatic 
pseudo-radial modes of oscillations of the actual rotating star rotating differ­
entially according to the implicit law of differential rotations; can be obtained 
from its topologically equivalent spherical model developed on the basis of the 
averaging technique of Kippenhahn and Thomas [22]. Following the approach 
of Mohan et al. [11,12], the equation determining the eigenfrequencies of 
pseudo-radial modes of oscillations of differentially rotating and tidally distorted 
stellar models which correspond to the eigenvalue problem determining the 
eigenfrequencies of radial modes of oscillations of the topologically equivalent 
spherical model may be expressed as:

</2T] 4-p dr] Pov 2 f, 4^ n . , ro¥ dP0
—/+------y- + ֊o ֊ 3—Hrh = 0, where H = ֊/ , (A,)
drOv zoy dr^y ” 0v \ 1 ) 'oy 'Om'

Here r0>(,, pOv and POv are the values of rv, pv and Pv on the equipotential 
( y = const ) in its equilibrium position, a the eigenfrequency of oscillation and 
t] some average of the relative amplitudes of pulsation of the fluid elements 
on the equipotential surface y = const. Using rv, pv and Pw in place of r0M,, 
pOy and POw to denote the equilibrium values on the equipotential surfaces, 
taking r0=z/(\\i-q) in place of rv as the independent variable, and assuming 
co2 =b]+2blb2s2+b2 sA as the law of differential rotation, the Eq. (A,) gov­
erning the small adiabatic pseudo-radial modes of oscillations of a differentially
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rotating and tidally distorted gas sphere may be expressed as:

Հշ,ծ1,ծ2,9)^-ր+ 
մր0՜

5(z, 6,. b2, q)~ C(z, ծ,. b2. ց)1 ՀՀ 
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where

Also

where
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In absence of any distortion: z = 1, 6, = b2 = 0, pw = p, Pv = P, r0

c .. . , . մ2ո 4-սմո Ä2crp
the above Eq. (A.) reduces to ——-—1յ- -

dx2 X dx
r| = 0 with

rp
x dP

P - , which is the usual equation determining the eigenfrequencies of

small adiabatic radial modes of oscillations of a gaseous sphere.
Eq. (A?) forms an eigenvalue problem in the eigenfrequency of oscillation 

ծ. As usual, էհե eigenvalue problem is of Sturm-Liouville type having 
singularities both at the centre and the surface of the model. It has to be 
solved subject to the boundary conditions which require q being finite at the 
centre as well as at the free surface.

In reality Eq. (A?) determines the periods of small adiabatic radial modes 
of oscillations of the topologically equivalent spherical model. However, 
equipotential surfaces of the actual differentially rotating distorted model are also 
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the surfaces of equipressure and equidensity, the values of pressure and density 
on the equipotential surfaces of the differentially rotating star are same as on 
the corresponding equipotential surfaces of the equivalent spherical model. 
Hence the eigenfrequencies of the radial modes of oscillations determined by 
solving the eigenvalue problem for the topologically equivalent spherical model 
are indeed the eigenfrequencies of the radial modes of oscillation of the 
undistorted model which have got influenced by the rotational effects of the 
star. However, the values of the eigenfunction q obtained on solving (A^ for 
the equivalent spherical model are not the actual values of amplitudes of 
pulsation q for the distorted model but rather some averages of the true values 
of eigenfunction q on the differentially rotating model.

We may thus use Eq. (A^ to determine the effects of differential rotation 
and the tidal distortions on the periods of small adiabatic radial modes of 
oscillations of a stellar model. The effects of differential rotation and tidal 
distortions have been incorporated through introduction of terms A(z,b],b2,q), 
B(z,b\,b2,q), C(z,b\,b2,q), E(z,b\,b2,q) and F(z,61։/>2,^), and dependence 
of pv and Pv on v . The present method in fact incorporates the effects of 
distortional forces both while computing the equilibrium structure (in comput­
ing the values of , pv etc.) as well as in the coefficients A, B and C of 
the Eq. (AJ which determines the periods of adiabatic small radial modes of 
oscillations.

The eigenvalue problem (Aj) together with the boundary conditions which 
require q being finite both at the centre as well as the free surface of the 
star may be solved numerically in the usual manner as is done in the case 
of undistorted models. For convenience in numerical work it is sometimes 
found convenient to set

r
q = — and r0=xros. (A3)

ro
(rw being the value of r0 on the outermost surface) in Eq. (AJ and treat x 
as the independent variable and C, as the dependent variable. With these 
substitutions x is now zero at the centre and one at the free surface. The 
boundary condition q = finite at the centre now gets replaced by £ = 0 at the 
centre. The boundary condition q = finite at the free surface now becomes C, 
finite at x= 1. Using (Aj), Eq. gets transformed in terms of the variables 
C, and x as

A\z,bi,b2,q,x)^-^- + B*(z,bl,b2,q,x')^- + C*(z,b],b2,q,x')Q = 0 (AJ 
cbr dx

where
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A’ (z, ft] ,b2, q, x) = A(z, ft], ft,. xros).

B' (z, ft], b2, q, x) = ——— B(z, ft], ft,, xros)- rO5C(z, b^b2. xros)-—^(z, ft], ft,. xros) 
x r

and

—•( A A > rOSR P* 2C (z,bi,b2,q,x) =----- ----- CT
Y

3-- |4£(x,b^xrosB*(z,ft],ft,, 
Y J x Jr

xros).

The boundary conditions now are:
Q = 0 at the centre x = 0 £ = finite at the surface x = l. (A,)

For computing an eigenvalue ct (A4) has to be solved numerically subject 
to the specified boundary conditions (Aj). Centre and the free surface of the 
star being singularities of this differential equitation it may be advisable to write 
the series solutions of (A4) near the singularities to start numerical integrations. 
If we assume C, to be normalized to have value 1 at the free surface, Eq. (A4) 
can be integrated near these two singularities by the series solutions of the type

C, = ajXJ+k near the centre x = 0,
j=o (A.)

and

^ = l + 22ft7(l-xy+x near the surface x = 1. (A,)
j=o

For obtaining an eigenfrequency of pseudo-radial mode of oscillation, the Eq. 
(A4) has to be integrated numerically for trial values of ct till a value of ct 
is obtained for which both the boundary conditions are satisfied. One way to 
achieve this objective could be to integrate Eq. (A4) numerically from the 
surface towards the centre using say fourth-order Runge-Kutta method. Starting 
values near the surface may be obtained from series solution (A,). Similarly 
we can integrate Eq. (A4) numerically outwards from the centre starting from 
a point near the centre. The starting values near the centre may be obtained 
from the series solution (A,.). Trials with different values of ct may be 
continued till a value of ct is found for which the value c,(dc,/dx\' from the 
inward and outward integrations match to desired accuracy at some suitably 
selected point inside the model.

The quantities pv , and the eigenfrequencies ct are still in dimensional 
form. For determining the eigenfrequencies it is recommended that these be 
first converted into suitable non-dimensional forms keeping in view the physical 
nature of the model under investigation.

It may be noted that the eigenvalued boundary value problem set up in this 
section determines the eigenfrequencies of the pseudo-radial modes of oscillations 
of a differentially rotating and tidally distorted gas spheres rotating differentially 
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according to the law to2 =6]2+2ô1 b2 s2+b2 sA. For pseudo-radial oscillations of 
a rotating model having solid body rotation we may set bf =2, b2=0, z = 1 
(2n being the square of the angular velocity of rotation in Eq. (A4)).
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ВЛИЯНИЕ ВАРИАЦИИ МАССЫ НА РАДИАЛЬНЫЕ 
КОЛЕБАНИЯ ДИФФЕРЕНЦИАЛЬНО ВРАЩАЮЩИХСЯ 

И ПРИЛИВНО ДЕФОРМИРОВАННЫХ 
ПОЛИТРОПИЧЕСКИХ ЗВЕЗД

С.САИНИ1, С.КУМАР2, А. КЛАЛ3

Предложен метод расчета собственных частот малых адиабатических 
псевдорадиальных мод колебаний дифференциально вращающихся и 
приливно деформированных звездных моделей, с учетом влияния вариаци 
массы на эквипотенциальные поверхности внутри звезды. Разработанный 
подход использован для расчета некоторых радиальных мод колебаний 
политропных моделей с политропными индексами 1.5, 3.0 и 4.0. Полу­
ченные результаты сравнены с результатами, полученными ранее без учета 
вариации массы. Приведены некоторые выводы, основанные на этом 
исследовании.

Ключевые слова: варации массы:эквипотенциальные поверхности:вращение 
и приливные деформации: политропические модели и т.д.
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