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An alternative derivation of the equation of motion of a charged point particle from 
Hamilton's principle is presented. The variational principle is restated as a Bolza problem of 
optimal control, the control variable u‘, /=0, 3, being the 4-velocity. The trajectory x'(j)
and 4-velocity u'(s) of the particle is an optimal pair, i.e. it furnishes an extremum to the 
action integral. The pair (x, u ) satisfies a set of necessary conditions known as the maximum 
principle. Because of the path dependence of proper time s, we are concerned with a control 
problem with a free end point in the space of coordinates (s,x°,...,x3). To obtain the equation 
of motion the transversality condition must be satisfied at the free end point.
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1. Introduction. The equation accepted as describing the motion of a 
charged point-particle of proper mass m, charge e and 4-velocity v', moving 
in a given field of gravitation gv and electromagnetism Fv may be written in 
the form

mcDv!=^FiJVj (D = y-; i,/ = 0,...,3), (1)

where the 4-velocity v‘ =dx‘l'ds = x‘ satisfies the equation

(2)

The equation of motion (1), which is in fact a generalization to curved 
space-time of the Heaviside-Lorentz law of ponderomotive force, may also be 
derived from a variational principle (omitting the minus sign which is a matter 
of convention)

J= j(mcdk+A4<dr,),->exfr. (fc = e/c), pj

*1

where A, is a 4-potential of the field FtJ = dt Aj-dj Aj. The extremum is to 
be sought in the class T of admissible curves consisting of those smooth, future 
oriented timelike world lines joining the fixed end events Ex, E*, with respective 
coordinates x{ and
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Remark 1: Eq. (2) is not only equivalent to a specification of the parameter 
used on the world line, i.e. natural parameter or proper time s, but it also 
expresses the timelike nature of the trajectory.

For purposes of reference we reproduce the essentials of the derivation. To 
prove that the Euler necessary condition for the variational problem (3) assumes 
the form of the equation of motion (1) it is customary, in the physical literature 
(e.g., [1-3]), to introduce for the set T of admissible timelike world lines, a 
monotonic parameter w, increasing from w = w։ at to w=w2 at E2 as s 
increases from s=s, to s=s2 (the simplest strictly increasing function iv(s): 
[si,s2]->[w],w2] is given by w(j)=w1+(w2-w։)(52-s։)"1(s-j1)). By adopting 
this procedure the original problem (3) with the equality constraint (2) is 
written in the form of a parametric Lagrange problem with fixed end events 
Ev E2 in the x‘ -space and with no side-conditions

J = J Fdw -> extr, F = mc(g,yx'zx'-/ + kA։x''.

The Lagrangian variables being x'(w) and the tangent vector x'1 =dx‘/dw 
vanishing nowhere on [w,, w2] (regular parametrization).The extremals satisfy 
the Euler-Lagrange equations

d dF dF 
dw dx" dx‘ ~ 

Calculating these expressions and setting w=s on the extremal one obtains 
the equation of motion (1). The object of this note is to present an alternative 
treatment of the variational principle (3). Using the parametrization of admissible 
timelike world lines in terms of proper time s, Eq. (2) defining the parameter 
s is incorporated into the calculations by the Lagrange multiplier technique. 
We restate the problem of extremizing the functional J under the constraint 
(2) as a Bolza problem of optimal control, the 4-velocity xz being our control 
variable u‘. In order to comply with the relativistic demand of the path 
dependence of proper time we have to consider a control problem with the 
first end point P fixed in the ($,x')-space but the second end point Q variable 
since s2 is undetermined. To obtain the equation of motion the transversality 
condition must be satisfied at Q.

2. Mathematical preliminaries and derivation of the equation 
of motion.

2.1. Statement of the problem and necessary conditions for the 
optimum. The variational problem (3) under the constraint (2) may be 
exhibited in the form

j{x,u)=mc{s2-sx՝)+k\Aluids^extr.
1
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provided we adjoin the side conditions

x'-u'=0. ֊ (7)

gtgu‘uJ=l- (8)

The extremum is sought in the class P of all pairs (x, w) satisfying Eqs. 
(7) and (8). It remains to specify under what end conditions the functional 
J(x, u) is to be extremized. Although the end events Ev E2 are fixed in the 
(x)-space, i.e in space-time, in the (s, x)-space the problem is one with the 
first end point fixed but the second end point variable. Indeed, if at the initial 
end point the values 5, = 0 and x‘(6)=x{ are all prescribed (the choice s։ = 0 
involves no loss of generality), at the final end point, because of the path 
dependence of proper time, we demand only x'(j2)=x2, leaving s2 variable. 
Considering a one-parameter family of admissible timelike world lines x‘(s,b)= 0, 
(sj = 0£s£s2(b)), the extremizing curve corresponding to the value of the 
parameter b = Q, the end conditions satisfy the equations

jj=0, x'(0,6)=x։', x‘(s2,b)=x2. (9)

Pairs (x, u) satisfying side conditions (7), (8) and end conditions (9) are 
called admissible. Formulated in the manner described above the original 
problem (3) becomes a special case of a Bolza problem of optimal control with 
a free end point [4,5], the velocity x' being our control variable u‘. If the 
admissible pair (x,u ) furnishes an extremum for the problem described above, 
the pair (x,u ) is termed optimal (or subject to the maximum principle) if 
it has the following properties [4-6]. Our formulation of the necessary conditions 
which the optimal pair must satisfy is essentially but not precisely that of 
Hestenes [4].

(a) There exist multipiers Xo= const, p,(s), A.(s) not vanishing simul­
taneously anywhere on (s։, s2)
and functions Z/(x,«, p, A,) and G(s2) respectively defined by

H = H(x, u, p)- u'uJ՝-1),

H(x,u, p)= p։u'-‘kq kAjU1, (10)
. G(s2)=A,0 mcs2 ,

such that:
(i) The class T of admissible curves consisting of smooth timelike world 

lines x‘(s), the corresponding control variables u‘(s) and the multipliers p,(s), 
A.(j) are continuous functions of s for s։ £ s £ s2.

(ii) The demand that H be invariant under general coordinate transformations 
implies that the functions pt{s) are the components of a covariant 4-vector 
and A.o, A.(s) invariants.

(P) At any given s, s։ s <, s2, the function H(x(s\ u, p(s)) of the variable 
u assumes for u = u(s) its maximum H = H(x(s\ u (s), p(s)). Since s does not 
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appear explicitly, i.e. the control problem is autonomous, H is subject to the 
differential equation

= ° (11)
as

for a non-autonomous problem, (11) generalizes to — H =—H(x.u,p,s). 
as os

(Y) The functions x(s), u(s), p,(s), X(s) satisfy the Euler-Lagrange 
equations

(a) ±X‘=J-H = uf, (b) ^-pl=-^-H = kglmJulum + XokAIJul, 
ds d pt ds dx

(c) = 0 = pt-‘k0kAl-2kgi uJ.
du

(8) The problem in this form is one with the first end point fixed in 
the (s, x)-space but the second end point variable since s2 is undetermined 
(viz. 9). Accordingly, for fixed x-coordinates at the second end point, the 
transversality condition reduces to (mcX0 +[-/Z]2)ds2 = 0, where ds2 is arbitrary. 

We then have the relation
mcX0= [pX-Xo^w'  ̂ (13)

which must hold at the second end point We have set [#]2 = H^c(s2), u '(j2 ), pt ($2)) 
and [pt]2 for the components of p, evaluated at s = s2.

2.2. Derivation of the equation of motion. Forming the scalar 
product of (12c) with u we obtain

P'U՛-kokAjU՛ = 2X(s), i.e H = H(jc,u,p)=2‘k[s). (14)

By virtue of (11) dH/ds vanishes hence

^ = ° ->X(s)=const. (15)

Further information to determine X is obtained from the transversality 
condition (13), which yields, taking into account (14) and (15),

mcX0 =[-Zf]2 =2X(s) ->X(s)= const =—mcX0. (16)

We observe that if Xo = 0, then by (16) and (12c) X(s)=Pt(s)=0. But the 
necessary condition (a) assures that these multipliers exist and there are not 
all zero, hence Xo * 0. The optimal trajectory x(s) is called normal and we 
can set Xo =1. Differentiation of (12c) with respect to s then gives

— = Xofc4, /U +mckogij—-+mcXo^ju'uJ. (17)

Setting X = (l/2)zncX0 in (12b) and equating to (17) we get the equation 
of motion of a charged point particle in curved space-time
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^-«r+r/;ü/i7'"=-l7Frfü/. 
me2 (18)
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К ВЫВОДУ УРАВНЕНИЯ ДВИЖЕНИЯ 
ЗАРЯЖЕННОЙ ТОЧЕЧНОЙ ЧАСТИЦЫ ИЗ 

ПРИНЦИПА ГАМИЛЬТОНА

Р.А.КРИКОРЯН

Представлен альтернативный вывод уравнения движения заряженной 
точечной частицы из принципа Гамильтона. Вариационный принцип 
переформулирован как проблема Больца оптимального контроля, где 
параметры контроля есть 4-векторы и‘, / = 0, .... 3. Траектория х'(я) и 
4-вектор скорости й‘ (5) частицы являются оптимальной парой, т.е. приводят 
к экстремуму интеграла действия. Пара (х, 17) удовлетворяет набору 
необходимых условий, известных как принцип максимума. Из-за 
зависимости собственного времени 5 от пути мы имеем дело с проблемой 
контроля с свободной конечной точкой в пространстве координат 
(5, х°.... х3). Для нахождения уравнения движения условие трансверсаль­
ности должно выполняться в свободной конечной точке.

Ключевые՜ слова: принцип максимума:условие трансверсальности
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