АСТРОФИЗИКА

TOM 57

НОЯБРЬ, 2014

ВЫПУСК 4

ПОГЛОЩЕНИЕ МАГНИТОЗВУКОВЫХ ВОЛН В КОРЕ НЕЙТРОННОЙ ЗВЕЗДЫ. РАДИОИЗЛУЧЕНИЕ ПУЛЬСАРОВ

Д.М.СЕДРАКЯН, А.С.АРУТЮНЯН, М.В.АЙРАПЕТЯН Поступила 12 сентября 2014

Кинетическое уравнение для плазчы коры нейтронной звезды решено в приближении времени релаксации. Получены значения кинетических коэффициентов плазмы коры в интервале значений плотности 10²-10¹¹ г/см². Рассмотрено распространение магнитозвуковых воли в коре нейтронной звезды с учетом различных механизмов диссипации энергии воли. Показано, что кора нейтронной звезды прозрачна для магнитозвуковых воли с частотами ш ≤ 10¹¹ Гш и поглошение воли тем меньше, чем больше центральная плотность звезды. Предложен механизм радиоизлучения пульсаров, где источник находится на поверхности звезды и имеет размеры, равные размерам сечения пучка магнитозвуковых воли. Объяснены некоторые особенности радиоизлучения - спектральный индекс и замирание пульсаров.

Ключевые слова: нейтронные звезды: пульсары: радиоизлучение

1. Введение. Известно, что подавляющее большинство из более чем 2000 пульсаров наблюдались в радиочастотном спектре излучения. До сих пор механизм радиоизлучения пульсаров рассматривался в общем контексте их механизма замедления и формирования источника излучения[1-3]. Казалось бы такой полход оправдан, поскольку импульсное излучение наблюдалось не только в радиодиапазоне, но и в более высокочастотной части спектра излучения. Теории излучения пульсаров, основанные на рассмотрении явлений, происходящих в магнитосфере пульсара, не могут объяснить большое количество наблюдательных данных в радиодиапазоне, такие как продолжительность импульсов, замирание пульсара и т.д. Это связано с тем, что основные положения, лежащие в основе существующих теорий излучения пульсаров - наличие сильного электрического поля вблизи поверхности пульсара, наличие внутренней (у поверхности пульсара) и внешней (вблизи светового цилиндра) шелей, местонахождение излучающей области и т.д., остаются вполне необоснованными [4,5].

Все трудности магнитосферного механизма радиоизлучения пульсаров можно обойти, если принять, что источник радиоизлучения пульсаров находится на поверхности звезды [6-8]. В частности, в работе [8] было показано, что при замедлении нейтронной звезды (НЗ) возможно формирование "магнитных шапок" на границе ядра и коры звезды. Из-за энерго-

выделения в этих областях в коре звезаы могут возбуждаться магнитозвуковые волны, которые переносят выделенную в "магнитных шапках" энергию до поверхности звезды. Генерированные этой волной алектрические токи на поверхности будут преобразовывать пришедшую изнутри энергию магнитного поля в энергию электромагнитного излучения. Для реализации вышеуказанного сценария формирования источника радиоизлучения пульсага необходимо вычислить частоты волн, которые могут распространяться в коре нейтронной звезды без значительного поглошения. Как было показано в работе [9], амплитуда магнитозвуковых волн зависит не только от амплитуды возмушения магнитного поля в "магнитной шапке", но и от кинетических коэффициентов вещества коры, которые ответственны за поглощение энергии волн. В работе [10] были вычислены коэффициенты электропроводности. теплопроводности и вязкости плазмы коры нейтронной звезды для плотностей $\rho = 10^8 \, r/cm^3 - 10^{14} \, r/cm^3$. При плотностях $\rho \le 10^8 \, r/cm^3$ вычисления затруднены тем, что необходимо учесть влияние магнитного поля, из-за которого вещество становится анизотропным, а кинетические коэффициенты - тензорами.

Цель данной статьи - учесть влияние магнитного поля на кинетические коэффициенты плазмы коры нейтронной звезды и изучить поглощение магнитозвуковых волн, распространяющихся в ней. Наши вычисления помогут выяснить, смогут ли магнитозвуковые волны переносить энергию магнитного поля, выделенную в "магнитных шапках" пульсара, до поверхности звезды.

2. Кинетическое уравнение для плазмы коры неитронной звезды. Плазма коры нейтронной звезды состоит из вырожденных электронов и полностью или частично ионизированных (в зависимости от плотности) атомов. Главную роль в процессах переноса в коре нейтронной звезды играют электроны, так как их средняя длина свободного пробега намного больше, чем у ионов. Для нахождения электронного вклада в кинетические коэффициенты плазмы необходимо, в общем случае, учесть как электрон-ионные, так и электрон-электронные столкновения. Однако частоты этих столкновений относятся как

$$\frac{v_{ei}}{v_{ee}} - \frac{Z^2 e^4 n_i}{e^4 n_e} = Z >> 1,$$

где учтено условие электронейтральности плазмы $Zn_r = n_e$. Следовательно, в большей части коры нейтронной звезды электрон-электронные столкновения можно не учитывать. Состояние электронной системы в неквантующем магнитном поле будем описывать квазиклассической функцией распределения $f_k(\vec{r},t)$, которая определяется из уравнения Больцмана для электронов, находящихся во внешнем электромагнитном поле:

$$\frac{\partial f_k}{\partial t} + \vec{v}_k \frac{\partial f_k}{\partial \vec{r}} - \frac{e}{\hbar} \left(\vec{E} + \frac{1}{c} \left[\vec{v}_k \vec{H} \right] \right) \frac{\partial f_k}{\partial \vec{k}} = \left(\frac{\partial f_k}{\partial t} \right)_{\rm CT}, \tag{1}$$

где \vec{k} - волновой вектор электрона, а $\vec{p}_k = \hbar \vec{k}$, $\varepsilon_k = \sqrt{m^2 c^4 + p_k^2 c^2}$, $\vec{v}_k = c^2 \vec{p}_k / \varepsilon_k$ - соответственно импульс, энергия и скорость электрона. Праная часть уравнения (1), называемая интегралом столкновений, имеет вид

$$\frac{\partial f_k}{\partial t}\Big|_{CT} = \int (f_{k'} - f_k) W(\vec{k}, \vec{k}') \frac{d\vec{k}'}{(2\pi)^3}, \qquad (2)$$

В выражении интеграла столкновений (2) $W(\bar{k}, \bar{k}')$ есть вероятность $\bar{k} \to \bar{k}'$ перехода в единицу времени. В присутствии магнитного поля решение кинетического уравнения (1), при малых градиентах термодинамических величин и малых значениях электрического поля и скоростей вещества, можно искать в виде

$$f_{k}(\vec{r},t) = f_{k}^{0}(\vec{r},t) + g_{k}(\vec{r},t), \qquad (3)$$

глс

$$f_k^0(\vec{r},t) = \frac{1}{\exp\left(\frac{\varepsilon_k'(\vec{r},t) - \mu(\vec{r},t)}{k_B T(\vec{r},t)}\right) + 1}$$

локально квазиравновесная функция распределения, $\varepsilon_k^r = \varepsilon_k - \vec{p}_k \vec{V}(\vec{r}, t)$ энергия электрона в системе отсчета, связанной с веществом. С учетом (3), кинетическое уравнение (1) в первом приближении по g_k примет вид [11]:

$$\vec{v}_{k} \frac{\partial f_{k}^{0}}{\partial \varepsilon_{k}} \left(\frac{\varepsilon_{k} - \mu}{T} \nabla T - \frac{\varepsilon_{k}}{c^{2}} \frac{\nabla p'}{\rho} + e\vec{E}' + \hbar \nabla (\vec{k}\vec{V}) \right) - \frac{\partial f_{k}^{0}}{\partial \varepsilon_{k}} \left(\frac{\varepsilon_{k} - \mu}{3} \frac{x^{2} + 2}{x^{2} + 1} + \frac{mc^{2}}{3} \frac{x^{2}}{\sqrt{x^{2} + 1}} \right) \operatorname{div} \vec{V} +$$
(4)

$$+\frac{e}{c}\overline{v}_{k}\left[\overline{V}+\frac{\varepsilon_{k}}{\rho e c^{2}}\overline{J},\overline{H}\right]\frac{\partial f_{k}^{0}}{\partial \varepsilon_{k}}+\frac{e}{\hbar c}\left[\overline{v}_{k}\overline{H}\right]\frac{\partial g_{k}}{\partial \overline{k}}=\int W(\overline{k},\overline{k}')\left(g_{k}+f_{k}^{0}-g_{k'}-f_{k'}^{0}\right)\frac{d\overline{k}'}{(2\pi)^{3}},$$

где $e\vec{E}' = e\vec{E} + \nabla\mu$, μ - химический потенциал, p' - возмущение давления плазмы, ρ - плотность плазмы, $x = p_F/mc$, p_F - ферми импульс электрона. Если считать рассеяние электронов на ионах упругим, в уравнение (4) можно подставить $f_k^0 = f_k^0$, а также учесть, что $W'(\vec{k}, \vec{k}') = W(k, k', \vartheta) =$ $= W'(k, \vartheta) \delta(\varepsilon_k - \varepsilon'_k)$, где ϑ - угол рассеяния электронов. В этом случае кинетическое уравнение упрошается и более удобно записывать его в тензорном виде:

$$\frac{\partial f^{0}}{\partial \varepsilon} \left[\upsilon_{i} \left(\frac{\varepsilon - \mu}{T} \partial_{i} T - \frac{\varepsilon}{c^{2}} \frac{\partial_{i} p'}{\rho} + eE_{i}' + \hbar k_{j} \partial_{i} V_{j} + \frac{e}{c} \varepsilon_{ijk} V_{j} H_{k} \right) - \left(\frac{\varepsilon - \mu}{3} \frac{x^{2} + 2}{x^{2} + 1} + \frac{mc^{2}}{3} \frac{x^{2}}{\sqrt{x^{2} + 1}} \right) \operatorname{div} \vec{V} \right] - \frac{e}{\hbar c} \varepsilon_{ijk} \upsilon_{i} H_{k} \frac{\partial g}{\partial k_{j}} = \\ = \int W(\vec{k}, \vec{k}') \left(g(\vec{k}) - g(\vec{k}') \right) \frac{d\vec{k}'}{(2\pi)^{3}},$$

(5)

гае для простоты индекс k опушен у величин \bar{v}_k , \bar{s}_k , \bar{f}_k При получении (5) также учтено, что в электронейтральной плазме коры нейтронной звезаы выполняется условие $\bar{V} \approx \bar{V} \approx \bar{V}$, $\bar{V} = \bar{V}$.

В уравнении (5) члены, содержащие \vec{o} , \vec{V} и div \vec{V} , определяют вязкость плазмы, а члены, содержащие ∇T , $\nabla p'$, \vec{E}' , \vec{V} , определяют теплоэлектрохимические свойства плазмы. Поэтому, при вычислении электрои теплопроводности плазмы в уравнении (5) можно пропустить члены с \vec{e} , \vec{V} и div \vec{V} , а при вычислении коэффициентов вязкости плазмы необходимо оставить только члены с \vec{e} , \vec{V} и div \vec{V} .

3. Тензоры электропроводности, теплопроводности и вязкости плазмы коры. Если подставить в кинетическом уравнении (5) $\partial_i V = 0$ и div $\overline{V} = 0$, то решение полученного уравнения в приближении времени релаксации имеет вид [11]:

$$g(\vec{k}) = \frac{e\tau_1}{1 + (\omega_c \tau_1)^2} \frac{\partial f^0}{\partial \varepsilon} \vec{\upsilon}_k \left(\vec{F} + (\omega_c \tau_1)^2 \frac{\vec{H}(\vec{F}\vec{H})}{H^2} + \omega_c \tau_1 \frac{[\vec{F}\vec{H}]}{H} \right), \tag{6}$$

гле

$$\overline{F} = \overline{E}' + \frac{1}{c} \left[\overline{V} \overline{H} \right] + \frac{\varepsilon - \mu}{eT} \left[\nabla T - T \frac{\nabla p'}{\rho c^2} \right] - \frac{\mu}{c^2} \frac{\nabla p'}{e\rho}, \tag{7}$$

a

$$\tau_1(\varepsilon) = \left[\int W'(k, k', \vartheta) (1 - \cos\vartheta) \frac{d\vec{k'}}{(2\pi)^3}\right]^{-1}$$
(8)

 время релаксации электронной компоненты плазмы коры нейтронной звезды. Из определений плотности тока и плотности потока тепла

$$\vec{j} = -\int \frac{2\,dk}{(2\pi)^3} e\,\vec{v}_k \,f_k = -\int \frac{2\,dk}{(2\pi)^3} e\,\vec{v}_k \,g_k \,, \tag{9}$$

$$\overline{q} = \int \frac{2 d\overline{k}}{(2\pi)^3} (\varepsilon_k - \mu) \overline{v}_k f_k = \int \frac{2 d\overline{k}}{(2\pi)^3} (\varepsilon_k - \mu) \overline{v}_k g_k$$
(10)

с использованием выражений (6)-(8), можно получить закон Ома и уравнение теплопроводности

$$\vec{J} = \hat{\sigma} \left(\vec{E} + \frac{1}{c} \left[\vec{V} \vec{H} \right] \right),$$
 (11)

$$\vec{q} = -\vec{a} \nabla T - \frac{\pi^2}{3e} \frac{(k_B T)^2}{\varepsilon_F} \vec{j} , \qquad (12)$$

где о - тензор электропроводности в магнитном поле и имеет компоненты

$$\hat{\sigma} = \sigma_0 \begin{pmatrix} \frac{1}{1 + (\omega_c \tau_1)^2} & 0 & \frac{-\omega_c \tau_1}{1 + (\omega_c \tau_1)^2} \\ 0 & 1 & 0 \\ \frac{\omega_c \tau_1}{1 + (\omega_c \tau_1)^2} & 0 & \frac{1}{1 + (\omega_c \tau_1)^2} \end{pmatrix},$$
(13)

а ж - тензор теплопроводности:

$$\hat{a} = a e_0 \frac{\hat{\sigma}}{\sigma_0}$$
. (14a)

В выражениях (13) и (14) σ_0 и ϖ_0 - электропроводность и теплопроводность в отсутствии магнитного поля:

$$\sigma_0 = \frac{n_e e^2}{m_e} \tau_1, \quad \mathfrak{E}_0 = \frac{\pi^2 k_{\mu}^2}{3e^2} T \sigma_0, \qquad (14b)$$

 ω_{e} -циклотронная частота. При получении (13) принято, что магнитное поле имеет компоненты \bar{H} (0, H, 0).

Для вычисления тензора вязкости необходимо оставить в кинетическом уравнении (5) только члены с $\partial_i V_i$ и div \vec{V} . В этом случае кинетическое уравнение можно написать в следующем виде:

$$\frac{\hbar^2 c^2}{\varepsilon} \frac{\partial f^0}{\partial \varepsilon} k_i k_j W_{ij} + \frac{\partial f^0}{\partial \varepsilon} \left(\frac{\hbar^2 c^2 k^2}{\varepsilon} - (\varepsilon - \mu) \frac{x^2 + 2}{x^2 + 1} - mc^2 \frac{x^2}{\sqrt{x^2 + 1}} \right) \frac{\operatorname{div} \vec{V}}{3} - \frac{eHc}{\varepsilon} k_i \varepsilon_{ij} \frac{\partial g}{\partial k_j} = \int W(\vec{k}, \vec{k}') (g(\vec{k}) - g(\vec{k}')) \frac{d\vec{k}'}{(2\pi)^3},$$
(15)

гле

 $\varepsilon_{ij} = \varepsilon_{ijk} h_k , \quad h_k = H_k / H ,$ $W_y = \frac{1}{2} \left(\frac{\partial V_i}{\partial x_j} + \frac{\partial V_j}{\partial x_i} \right) - \frac{1}{3} \delta_{ij} \operatorname{div} \vec{V} .$

Для вычисления тензора первой вязкости можно еще не рассматривать член с div \vec{V} в уравнении (15). Тогда, если ввести второе время релаксации как

$$r_{2}(\varepsilon) = \left[\int W(\vec{k}, \vec{k}') (1 - \cos^{2} \vartheta) \frac{d\vec{k}'}{(2\pi)^{3}} \right]^{-1}, \qquad (16)$$

то из решения уравнения (15) можно получить также тензор вязких напряжений в следующем виде [12]:

$$\pi_{ij} = \eta \left\{ h_i h_j h_k h_l + \frac{h_i h_j h_{jk} + h_j h_l h_{ik} - \omega_c \tau_2 \left(\varepsilon_{ik} h_j h_l + \varepsilon_{jk} h_l h_l \right)}{1 + \left(\omega_c \tau_2 \right)^2} + \frac{h_{ik} h_{jl} - \omega_c \tau_2 \left(\varepsilon_{ik} h_{jl} + \varepsilon_{jk} h_{ll} \right) + 2\left(\omega_c \tau_2 \right)^2 h_{ij} h_{kl}}{1 + 4\left(\omega_c \tau_2 \right)^2} \right\} \left\{ \left(\frac{\partial V_i}{\partial x_j} + \frac{\partial V_j}{\partial x_i} - \frac{2}{3} \delta_{ij} \operatorname{div} \vec{V} \right),$$
(17)

гле

$$\eta = \frac{1}{5} n_e v_F p_F \tau_2 \tag{18}$$

коэффициент первой вязкости в отсутствии магнитого поля. Что касается второго коэффициента вязкости, то как показано в работе [13], он порядка $(k_B T / \varepsilon_F)^2$ по отношению к η и им можно пренебречь. Таким образом,

кинетические козффициенты плазмы коры нейтронной звезды выражаются двумя релаксационными временами τ_1 и τ_2 . Результаты их численного расчета приведены в разделе 4.

4. Вычисление времен релаксации τ_1 и τ_2 . Как видно из формул (8) и (16), времена релаксации τ_1 и τ_2 выражаются через вероятность рассеяния W(k,k',9) электронов на ионах. Вид электрон-ионного взаимодействия зависит от состояния ионной компоненты, а последнее определяется параметром "газовости" Г:

$$\Gamma = \frac{Z^2 e^2}{k_B T a},$$
(19)

где $a = (3/4\pi n_c)^{1/3}$ - характерное расстояние ионов, n_c - плотность числа ионов. Введем еще несколько температурных характеристик ионной системы

$$T_1 = \frac{Z^2 e^2}{k_B a}$$

есть температура, выше которой ионы составляют больцмановский газ. Температура плавления ионной компонеты, согласно [14], порядка

$$T_m = \frac{Z^2 e^2}{k_B a \Gamma_m},$$

где Г_т≈150, и температура Дебая, определяемая как [14]

$$T_D = \sqrt[3]{6\pi^2 n_i} \frac{\hbar c_S}{k_B},$$

где с - скорость звука. Если температура внутри коры нейтронной звезаы $T > T_1$, то ионы можно рассматривать как больцмановский газ. При выполнении условия $T_m < T < T_1$ ионную компоненту можно считать жидкостью, а при $T < T_m$ - кристаллом, если $T_D < T_m$. Возможно также, что при некоторых плотностях выполняется условие $T_D > T_m$. В этом случае ионный компонент остается жидкостью даже при $T < T_m$. В этом случае ионный компонент остается жидкостью даже при $T < T_m$. В этом случае ионный компонент остается жидкостью даже при $T < T_m$. В этом случае ионный компонент остается жидкостью даже при $T < T_m$. В этом случае ионный компонент остается жидкостью даже при $T < T_m$. На рис.1 показаны зависимости температур T_1 , T_m , T_D от плотности для двух уравнений состоянния AU и ModelA (см. раздел 5). Из рис.1 видно, что ионный компонент можно считать жидкостью вплоть до плотностей $\rho - 10^{12}$ г/см¹. Поэтому будем следовать работе [15] и будем рассматривать кулоновское рассеяние электронов на ионах, а ион-ионные взаимодействия учтем с помощью двухточечной корреляционной функции. Как показано в работе [15], выражение для вероятности рассеяния электронов на ионах имеет вил:

$$W(k, k', \vartheta) = (2\pi)^{3} Z^{2} n_{c} c \frac{\lambda_{c}^{5} \alpha^{2}}{2 \epsilon^{2}} (1 + \epsilon^{2} + (\epsilon^{2} - 1) \cos \vartheta) \times$$

$$[(1 - \cos \vartheta)(\epsilon^{2} - 1) + r_{0}^{-2}]^{-2} \phi(\chi) \delta(\epsilon - \epsilon') = w(\epsilon, \vartheta) \delta(\epsilon - \epsilon'),$$

$$(20)$$

где λ_c - комптоновская длина электронов, $\alpha = 1/137$ - постоянная тонкой

структуры, с - скорость света, $r_0 = \sqrt{2} r_D / \lambda_c$, r_D - дебаевский радиус экранизации для вырожденного электронного газа и определяется выра-

Рис.1. Зависимости температур T_1 , T_p , T_p от плотности для двух уравнений состоянния AU и ModelA.

жением $r_D^{-2} = \lambda_c^{-2} \frac{4\alpha}{\pi} \in_F (\in_F^2 - 1)^{1/2}$. Здесь \in_F - энергия Ферми в единицах mc^2 . Функция $\phi(\chi)$ в выражении (20) определяется как

$$\phi(\chi) = 1 + 3 \int_0^\infty g(x) \frac{\sin \chi x}{\chi x} x^2 dx, \qquad (21)$$

гле

$$\chi(e, \vartheta) = \left(\frac{3}{4\pi n_i}\right)^{1/3} \left| \vec{k} - \vec{k'} \right| = \left(\frac{3}{4\pi n_i}\right)^{1/3} \lambda_c^{-1} \sqrt{2(1 - \cos\vartheta)} \left(e^2 - 1\right)^{-1},$$

a

$$g(\vec{R}) = \frac{\int \exp(-U/k_B T) d\vec{R}_3 \dots d\vec{R}_{n_i}}{\int \exp(-U/k_B T) d\vec{R}_1 \dots d\vec{R}_{n_i}}$$
(22)

и есть корреляционная функция ионов. Для времен релаксации $\tau_n(\varepsilon_F)$, n=1, 2 из (8), (16) и (20)-(22) можно получить следующие выражения:

$$\tau_n = \frac{m c}{\pi Z^2 e^4 n_i} \frac{\epsilon_F}{\sqrt{\epsilon_F^2 - 1}} \times \left[\int_0^{\pi} d\,\vartheta \frac{\sin\vartheta(\mathbf{i} \cdot \cos^n\vartheta) \left[2 + \left(\epsilon_F^2 - \mathbf{i}\right)(\mathbf{i} + \cos\vartheta)\right]}{\left\{ \left(\epsilon_F^2 - \mathbf{i}\right)(\mathbf{i} - \cos\vartheta) + \frac{2\alpha}{\pi} \epsilon_F \sqrt{\epsilon_F^2 - 1} \right\}} \phi(\chi(\epsilon_F, \vartheta)) \right]^{-1}.$$
(23)

Для численных расчетов времен релаксации $\tau_{n}(\varepsilon_{F})$, n = 1, 2 необходимо знать корреляционную функцию g(x). При плотностях $\rho \leq 10^{\circ}$ г/см мы

Рис.2. Зависимости заряда Z и массового числа A нонов, плотности барионов n_i , плотности свободных нейтронов n_i , плотности нонов n и электронов n_i от плотности вещества в коре H3.

использовали результаты работы [15] для функции g(x). Кроме этого, для вычисления времен релаксации τ_n необходимо знать плотность ионов n_n энергию Ферми электронов \in_F , а также заряд Z и массовое число A ионов в зависимости от плотности. Их можно получить из условия динамического равновесия плазмы по отношению к прямым и обратным β -переходам [16]. На рис.2 приведены графики зависимости заряда Z и массового числа A ионов, плотности барионов n, плотности свободных

Рис.3. Зависимости времен релаксации $\tau_{a}(\varepsilon_{p})$, n=1, 2 от плотности в коре нейтронной звезды.

нейтронов n_n от плотности вешества в коре H3. С помощью результатов, представленных на этих графиках, можно получить также значения плотности ионов $n_r = (n - n_n)/A$ и электронов $n_e = (n - n_n)Z/A$. Графики зависимостей n_r и n_r от плотности в коре H3 также показаны на рис.2. Далее, при плотностях $\rho \ge 10^7$ г/см³ мы использовали приближенную формулу для $\tau_n(\varepsilon_F)$, n = 1, 2, приведенную в работе [10]. Зависимости времен релаксации $\tau_n(\varepsilon_F)$, n = 1, 2 от плотности в коре нейтронной звезды показаны на рис.3. Используя эти графики, теперь мы сможем вычислить кинетические коэффициенты плазмы коры нейтронной звезды, необходимые для изучения поглошения магнитозвуковых волн.

5. Магнитозвуковые волны в коре НЗ и их поглошение. Как было отмечено в работе [8], в "магнитных шапках" пульсара энергия. заключенная в намагниченных нейтрон-протонных вихревых кластерах, может преобразоваться в энергию магнитозвуковых волн, распространяющихся в коре нейтронной звезды. В работах [9,17,18] решена система уравнений скалярных МГД уравнений для поперечно-ограниченных волновых пучков. В этих работах вещество коры считалось изотропным. Однако известно, что в обшем случае, при наличии магнитного поля уравнения МГД должны иметь тензорный вид. Скалярные уравнения МГД применимы, если выполняется условие $\omega_c \tau_{12} \ll 1$, где $\omega_c = eH/mc$ - циклотронная частота электронов. Если умножить значения т., представленные на рис.3, на ω, то можно увидеть, что скалярные уравнения МГД применимы при плотностях р≥10⁸ г/см³. Как увидим далее, во внутренней части коры (ρ≥10⁸ г/см¹) поглошение магнитозвуковых волн обусловлено вязкостью плазмы, а во внешней части коры (р≤10⁸ г/см³) - электропроводностью плазмы. Так как анизотропию кинетических коэффициентов необходимо учесть только во внешней части коры, то можно считать коэффициент вязкости плазмы коры скалярной величиной во всей коре НЗ, а тензорный характер коэффициента теплопроводности будем учитывать во внешней части коры (р≤10⁸ г/см³).

Как показано в работе [17], из уравнений МГД можно получить уравнение для описания изменения магнитного поля в следующем виде:

$$\frac{d\bar{H}}{dt} - (\bar{H}\nabla)\bar{V} + \bar{H}(\nabla\bar{V}) = \hat{v}_{m}\Delta\bar{H}, \qquad (24)$$

гле тензор

$$\hat{\mathbf{v}}_{m} = \frac{c^{2}}{4\pi} \hat{\sigma}^{-1} = \frac{c^{2}}{4\pi\sigma_{0}} \begin{pmatrix} 1 & 0 & \omega_{c}\tau_{1} \\ 0 & 1 & 0 \\ -\omega_{c}\tau_{1} & 0 & 1 \end{pmatrix}$$
(25)

называется тензором магнитной вязкости. В магнитозвуковой волне возмущенные значения физических величин, таких как напряженность

магнитного поля, плотность, давление и температура вещества, можно представить в виде

$$\bar{H} = \bar{H}_0 + \bar{h}, \quad \rho = \rho_0 + \rho', \quad p = p_0 + \rho', \quad T = T_0 + T',$$
 (26)

где индексом "0" обозначены невозмушенные значения соответствующих величин, а \bar{h} , ρ' , p' и T' - их возмушения. Если направить ось l по направлению магнитного поля в коре нейтронной звезды, ось l - по радиусу к центру звезды, то уравнения МГД имеют решения в виде суммы поперечных, противоположно распространяющихся волновых пучков, которые образуют стоячую волну в коре H3. В продольной магнитозвуковой волне возмушения физических величин можно выразить через скорость V вещества следующим образом:

$$V_{y} = V_{z} = 0, \ h_{x} = h_{z} = 0, \ h_{y} = \mp \frac{V_{x}}{c_{n}} H_{0}, \ \rho' = \mp \frac{V_{x}}{c_{n}} \rho_{0}, \ p' = c_{x}^{2} \rho', \ T' = (\gamma - 1) \frac{\rho'}{\rho} T, (27)$$

где верхние знаки относятся к волне, распространяющейся по направлению x < 0, а нижние знаки - по направлению x > 0. Согласно (27), в продольной магнитозвуковой волне возмущение магнитного поля \bar{h} имеет только компоненту \bar{h}_y . Тогда уравнение (24) для возмущения \bar{h}_y магнитного поля примет вид:

$$\frac{dh_y}{dt} - \left(\tilde{h}_y \nabla\right) \vec{V} + \vec{h}_y \left(\nabla \vec{V}\right) = \frac{c^2}{4\pi\sigma_0} \Delta \vec{h}_y , \qquad (28)$$

т.е. оно имеет тот же вид, что и соответствующее скалярное уравнение Из полученного результата следует, что в дальнейших вычислениях (например, поглощения магнитозвуковых волн) мы можем использовать значения коэффициента электропроводности σ_0 в отсутствии магнитного поля. Кроме этого, не изменится и так называемое "эволюционное уравнение" для скорости вещества $V_{1} = u$, которое имеет вид:

$$\frac{\partial^2 u_{1,2}}{\partial \tau_{1,2}' \partial \tau_{1,2}} - \frac{1}{2} \hat{L} u_{1,2} - \frac{\partial u_{1,2}}{\partial \tau_{1,2}} \frac{d \ln \Phi_{1,2}}{d \tau_{1,2}'} = -\frac{1}{c_n} \frac{\partial}{\partial \tau_{1,2}} \left[\Gamma u_{1,2} \frac{\partial u_{1,2}}{\partial \tau_{1,2}} + D \frac{\partial^2 u_{1,2}}{\partial \tau_{1,2}'} \right].$$
(29)

В уравнении (29) Г - коэффициент нелинейности среды, *D* - коэффициент диссипации, которые определяются по формудам

$$\Gamma = \frac{\gamma + 1}{2} \frac{c_s^2}{c_n^2} + \frac{3}{2} \frac{c_a^2}{c_n^2} \,. \tag{30}$$

$$D = -\frac{1}{2c_n} \left\{ \frac{4}{3} \frac{\eta}{\rho} + \frac{c_A^2}{c_n^2} \frac{c^2}{4\pi\sigma_0} + \frac{(\gamma - 1)^2 \omega_0 T}{\rho c_n^2} \right\},$$
(31)

$$c_n^2 = c_s^2 + c_A^2, \quad c_A^2 = \frac{H_0^2}{4\pi\rho_0}.$$
 (32)

где

Оператор \tilde{L} в уравнении (29) определен в работе [9], величины $\tau_{1,2}'$ и $\tau_{1,2}$, входящие в уравнение (29), равны соответственно:

$$\tau'_{1,2} = \int_{\pm x}^{t} \frac{dx}{c_n(x)}, \quad \tau_{1,2} = \tau'_{1,2} - t, \quad (33)$$

а величина Ф12 определяется как

$$\Phi_{1,2}^{2} = \frac{\rho(0)c_{a}(0)}{\rho(\tau_{1,2})c_{a}(\tau_{1,2})}$$
(34)

Как показано в работах [9,17,18], решение эволюционного уравнения можно искать в виде гауссовских пучков:

$$u_{1,2}(\tau_{1,2},\tau'_{1,2},r) = \frac{\Phi(\tau'_{1,2})b_{1,2}}{2f(\tau'_{1,2})} \exp\left\{i\omega\tau_{1,2} + i\left[\sigma(\tau'_{1,2}) + \frac{r^2}{2Q(\tau'_{1,2})}\right] - \frac{r^2}{2r_0^2f^2(\tau'_{1,2})} + \omega^2 \int_0^{\tau'_{1,2}} \frac{D}{c_n} d\tau'\right] + \kappa.c.,$$
(35)

где $f(\tau'_{1,2})$ описывает изменение радиуса пучка и $f(\tau'_{1,2}) \approx 1$ [17], а дополнительная фаза $\sigma(\tau'_{1,2}) + \frac{r}{2Q(\tau'_{1,2})}$ возникает из-за ограниченности пучка Решения эволюционного уравнения $u_{1,2}$ связаны между собой граничным условием на поверхности нейтронной звезды. Так как конец коры (x = 0) свободен, граничное условие на нем имеет вид p' = 0. С учетом этого условия и уравнения (27), для функций $u_{1,2}$ получим:

$$u_1(x=0) = u_2(x=0) \Longrightarrow b_1 = b_2 \equiv b$$
. (36)

В этом случае на внешней поверхности коры функции и, имеют значение

$$u(r,t) = u_0(r)\cos\left\{\frac{\omega l}{c_n\left(1 - \frac{c_n^2}{\omega^2 r_0^2}\right)} - \omega t + \frac{\omega r^2}{2c_n R_0} + \sigma_0\right\},$$
 (37a)

$$u_0(r) = 2b \Phi(l/c_n) \exp\left\{-\frac{r^2}{2r_0^2} - \omega^2 \int_0^l \mu \, dx\right\},$$
 (37b)

где величина

$$\mu = -\frac{D}{c_n^2} \tag{38}$$

определяет степень поглошения магнитозвуковых волн при их распространении в коре нейтронной звезды. Если обозначить $I_0(\omega)$ начальное значение интенсивности волны частотой ω , возбужденной на внутренней границе коры нейтронной звезды, а $I(\omega)$ - интенсивность той же волны на внешней границе коры, и учитывать, что энергия волны пропорциональна

д.М.СЕДРАКЯН И ДР

квадрату амплитуды, то из (37b) получим

$$\frac{I(\omega)}{I_0(\omega)} = \delta(\omega) = \exp\left(-2\omega^2 L\right), \tag{39}$$

rne.

$$L = 2 \int_{0} \mu dx.$$
 (40)

С учетом (38) и (31) величину и можно представить в виде

$$\mu = \mu_1 + \mu_2 + \mu_3, \qquad (41)$$

ГЛС

$$\mu_1 = \frac{2\eta}{3\rho c_n^3}, \quad \mu_2 = \frac{c_n^2}{c_n^3} \frac{c_n^2}{8\pi\sigma_0}, \quad \mu_3 = \frac{\frac{2}{3}e_0 T}{18\rho c_n^3} \left(\frac{x^2+2}{x^2+1}\right)$$
(42)

Как видно из формул (42), коэффициенты μ_1 , μ_2 и μ_3 содержат, соответственно коэффициенты взкости плазмы коры η , электропроводности σ_0 и теплопроводности \mathfrak{B}_0 . Следовательно, μ_1 описывает поглощение магнитозвуковых волн из-за вязкости плазмы, μ_2 - поглощение из-за электрического сопротивления и μ_3 - поглощение из - за теплопроводности плазмы. Для вычисления коэффициентов μ_1 , μ_2 и μ_3 в коре нейтронной звезды необходимо знать зависимость кинетических коэффициентов плазмы коры σ_0 , \mathfrak{B}_0 и η от плотности, а также скорости распространения алфвеновских волн c_4 и магнитозвуковых волн c_6 в коре. На рис 4 представлены графики зависимостей кинетических коэффициентов σ_0 , \mathfrak{B}_0 и η от плотности вещества в коре НЗ. Вычисления проводились по формулам (14b), гле мы приняли температуру в коре НЗ $T=10^5$ К и использовали значение плотности электронов из рис.2. Далее, для вычисления величин с и с необходимо

Рис.4. Зависимости кинетических коэффициентов σ_0 , \mathbf{e}_0 и η , скорости звука c_i , алфвеновских волн c_i и магнитозвуковых волн c_j от плотности вещества для уравнения состояния AU.

калать уравнение состояния вещества $P = P(\rho)$. Мы использовали два уравнения состояния: AU[19] и ModelA [20]. По первому из них при плотностях выше ялерной р₀ ≥2·10¹⁴ г/см⁷ вешество состоит из адронов, а по второму из них выше некоторой плотности может возникать кварковое вещество. На рис.4 представлены также зависимости скорости звука с, алфвеновских волн с, и магнитозвуковых волн с в слиницах 10'см/с от плотности вешества для уравнения состояния AU (результаты вычислений этих величин для уравнения состояния ModelA аналогичны, поэтому здесь не приводятся). Как видно из графиков на рис.4, скорость магнитозвуковых волн с мало меняется в коре НЗ по сравнению с скоростями с и с Поэтому при решении эволюционного уравнения (29) мы приняли c_a постоянной и равной $c_a \approx 10^9$ см/с. Далее на рис.5 представлены зависимости коэффициентов µ1, µ2 и µ1 от плотности для двух вышеуказанных уравнений состояния. Как видно из этих графиков, при плотностях р≥10⁸ г/см³ коэффициент µ₁ на несколько порядков больше µ₂ и µ₁, следовательно, при плотностях р≥10⁸ г/см¹ поглошение магнитозвуковых волн происходит в основном из-за вязкости плазмы коры НЗ. При плотностях р≤10⁷ г/см' коэффициент µ₂ на несколько порядков больше µ₁ и µ₃, следовательно, при плотностях р≤10⁷ г/см³ диссипация

Рис.5 Зависимости коэффициентов μ_1 , μ_2 и μ_3 от плотности для уравнений состояния AU и ModelA.

энергии волны происходит в основном из-за электрического сопротивления среды. Теплопроводность плазмы H3 дает существенный вклад в поглошении магнитозвуковых волн в узком интервале плотностей 10° г/см³ $\leq \rho \leq 10^8$ г/см³. На рис.6 показаны также зависимости суммарного коэффициента $\mu = \mu_1 + \mu_2 + \mu_3$ от плотности вещества в коре H3 для двух уравнений состояния AU и ModelA. Графики показывают, что поглошение магнитозвуковых волн в коре H3 происходит в основном во внешней части коры при плотностях $\rho \leq 10^8$ г/см³, так как в этой области значение μ на несколько порядков больше, чем в области $\rho \geq 10^8$ г/см³. Это означает также, что

поглощение магнитозвуковых волн в коре НЗ в основном обусловлено злектропроводностью вещества.

Так как нам уже известна зависимость коэффициента µ от плотноси вещества в коре H3, то можно вычислить величину L из (40), если дана

Рис.6. Зависимости суммарного коэффициента $\mu = \mu_1 + \mu_2 + \mu_3$ от плотности вещества в коре НЗ для двух уравнений состояния AU и ModelA.

зависимость плотности вещества от радиуса звезды. Мы использовали два уравнения состояния AU и ModelA и вычислили конфигурации звезд с центральными плотностями $\rho_c = 5 \cdot 10^{14}$ г/см³ и $\rho_c = 10^{15}$ г/см⁴ с помощью кода RNS [21]. Длина коры по уравнению состояния AU составила l = 6.91км и l = 1.46 км, соответственно, при малой и большой центральной плотности, а по уравнению состояния ModelA длина коры составила, соответственно, l = 3.6 км и l = 1.54 км. В табл.1 приведены значения величины L из (40) для вышеуказанных конфигураций H3. Частоты ω_{100} и ω_{1000} в табл.1 представляют те значения частот магнитозвуковых волн, интенсивность которых

Таблица 1

ЗНАЧЕНИЯ ВЕЛИЧИНЫ L ИЗ (40) ДЛЯ РАЗЛИЧНЫХ КОНФИГУРАЦИЙ НЗ И ЗНАЧЕНИЯ ЧАСТОТ МАГНИТОЗВУКОВЫХ ВОЛН, ИНТЕНСИВНОСТЬ КОТОРЫХ УМЕНЬШАЕТСЯ В 10, 100 И 1000 РАЗ ПРИ ПРОХОЖДЕНИИ КОРЫ НЗ

	1. AU	2. AU	3. modelA	4. modelA
	$ρ_c = 5 \cdot 10^{14} \Gamma/cm^3$	$\rho_c = 10^{15} r/cm^3$	$p_e = 5 \cdot 10^{14} \Gamma/cm^3$	$\rho_c = 10^{15} r/cm^3$
L. Γμ ⁻²	$2.793 \times 10^{-22} 9.08 \times 10^{10} 1.284 \times 10^{11} 1.573 \times 10^{11}$	1.016×10^{-24}	3.68×10 ⁻²²	4.035×10 ⁻²³
ω ₁₀ , Γμ		1.506 × 10 ¹¹	7.91×10 ¹⁰	2.389×10 ¹¹
ω ₁₀₀ , Γμ		2.129 × 10 ¹¹	1.119×10 ¹¹	3.378×10 ¹¹
ω ₁₀₀₀ , Γμ		2.608 × 10 ¹¹	1.37×10 ¹¹	4.138×10 ¹¹

уменьшается соответственно, в 10, 100 и 1000 раз при прохождении коры H3. Из расчетов, представленных в табл.1 видно также, что кора H3 прозрачна для магнитозвуковых воли с частотой $\omega \le 10^{11}$ Гц, при этом поглошение воли тем меньше, чем больше центральная плотность звезды. Отметим здесь, что при более низких температурах (например, при 10[°] K)в некоторой части коры плазма является кулоновским кристаллом, свойства которой могут отличаться от рассмотренных нами выше свойств [22,23].

6. Спектр радиоизлучения пульсаров. Полученная нами формула (39) для спектра радноизлучения пульсаров хорошо согласуется с наблюдениями. Действительно, из наблюдений известно, что конец частотного спектра при 10⁹ Гц≤∞≤10¹¹ Гц у некоторых раднопульсаров хорошо описывается формулой [24]

$$J_0(\omega) = b \cdot \omega^{-n} \,. \tag{43}$$

где n - спектральный индекс и для разных радиопульсаров лежит в области $1.3 \le n \le 2$. Можно принять среднее значение n равное 1.6. Полученная нами зависимость (39) интенсивности радиоизлучения от частоты ω можно написать в виде:

$$I(\omega) = \alpha \cdot e^{-\lambda \omega^2} \,. \tag{44}$$

Как видно из формул (43) и (44), обе интенсивности стремятся к нулю при больших ω . Эти две формулы для интенсивности радиоизлучения можно сравнить друг с другом, если считать, что при больших ω совпадают логарифмические производные функций $J_0(\omega)$ и $I(\omega)$, т.е.

$$\frac{1}{J_0(\omega)}\frac{dJ_0(\omega)}{d\,\omega} = \frac{1}{I(\omega)}\frac{dI(\omega)}{d\,\omega}.$$
(45)

Это требование приводит к равенству

$$n = 2\lambda\omega^2 . \tag{46}$$

Как видно из табл.1, среднее значение λ_{cp} равняется $2 \cdot 10^{-22} \text{ c}^2$. Тогда, подставляя в формулу (46) $n_{cp} = 1.6$ и $\lambda_{cp} = 2 \cdot 10^{-22} \text{ c}^2$, можно получить предельное значение частоты ω_{np} радиоизлучения

$$\omega_{\rm np} = \sqrt{\frac{n_{\rm cp}}{2\lambda_{\rm cp}}} = 6 \cdot 10^{10} \, {\rm c}^{-1} \,, \tag{47}$$

что хорошо согласуется с наблюдениями [24].

7. Некоторые характеристики радиоизлучения пульсаров. Энергия для возбуждения стоячей магнитозвуковой волны выделяется в безвихревой зоне из-за "схлопывания" вихревых нитей. Процесс выделения энергии происходит из-за диффузии магнитного поля, когда ее значение на границе безвихревой зоны достигает значения второго критического поля протонного сверхпроводника $H_{\rm ex}$. Характерные время и длина диффузии магнитного поля оцениваются из уравнения

$$\Delta \vec{B} = \frac{4\pi\sigma}{c^2} \frac{\partial B}{\partial t},\tag{4S}$$

гае о - проводимость нормальной плазмы в безвихревой зоне. Отскова имеем:

$$\tau \equiv \frac{4\pi\sigma}{c^2} d^2 \,, \tag{49}$$

где т и d - характерные время и длина диффузии магнитного поля. Время т совпадает с временем излучения "группы импульсов", а d есть толщина кругообразного диска, где сконцентрировано магнитное поле перед диффузией.

Если полная интенсивность радиоизлучения пульсара порядка $I = 10^{36}$ эрг/с, то энергия, которая излучается за время активности пульсара т будет $\Delta \varepsilon = I \tau$. Эта энергия сконцентрирована на границе безвихревой зоны в объеме в виде диска толщиной *d*, поперечное сечение которой имеет радиус *r*. Значение энергии $\Delta \varepsilon$ можно найти из формулы

$$\Delta \varepsilon = \frac{(H_{s2}/2)^2}{8\pi} \pi r^2 d \,. \tag{50}$$

Здесь $\pi r^2 d$ - объем диска. Согласно определению $\Delta \varepsilon$, а также формулам (49) и (50), можно найти значение величины τ :

$$\tau = \frac{\Delta \varepsilon}{l} = \left(\frac{rH_{\varepsilon 2}}{5.5}\right)^4 \frac{c^2}{4\pi\sigma l^2}.$$
 (51)

Если считать, что $H_{e} = 10^{11}$ Гс и $\sigma = 10^{30}$ с⁻¹, то согласно (51) имеем:

$$\tau = \frac{\Delta \varepsilon}{I} = 10^3 \, \mathrm{c} \,. \tag{52}$$

Отсюда сразу получаем, что полная энергия излучения "группы импульсов" во время активности пульсара порядка $\Delta \varepsilon = 10^{33}$ эрг. Используя формулу (49), легко оценить также величину $d = 3 \cdot 10^{-4}$ см, которая как раз порядка размеров ствола нейтронного вихря, где фактически сконцентрированы протонные вихри, т.е. магнитное поле.

После излучения "группы импульсов" пульсар "замирает", так как необходимо время, чтобы поле на границе безвихревой зоны снова достигло значения $H_{\rm ex}$. Это происходит из-за движения нейтронных вихрей к границе безвихревой зоны. Нейтронные вихри, достигнув границы, аннигилируются, оставляя там протонные вихри, которые увеличивают значение магнитного поля, доводя его до значения $H_{\rm ex}$. Для этого необходимо требовать, чтобы энергия магнитного поля, находяшаяся в протонных вихрях, равнялась бы значению диффузионной энергии магнитного поля, т.е. $\Delta \varepsilon$. Следовательно, можно писать

$$\frac{H_{c2}^2}{8\pi}\pi r^2 vt = \Delta\varepsilon, \qquad (53)$$

где $v = \Omega/\Omega R$ - скорость движения нейтронных вихрей и t - время накопления энергии $\Delta \varepsilon$ на границе вихревой зоны. Из формулы (53) легко получить:

$$\frac{I}{\tau} = \frac{8 \cdot 10^9 I}{(H_{c2}r)^2 |\bar{\Omega}/\Omega|_{-15} R_6} = \frac{80}{|\bar{\Omega}/\Omega|_{-15} R_6} .$$
(54)

Здесь R_{c} - радиус ядра нейтронной звезды в единицах 10° см. Как видно из (54) "время замирания" t по сравнению с временем излучения "группы импульсов" т может меняться в довольно широком интервале. Так как $10^{-2} \leq |\Omega/\Omega|_{-15} \leq 10^{2}$, следовательно, t/τ может меняться от порядка единицы до значения 8 10³. Примечательно, что при уменьшении $|\Omega|$, т.е. при увеличении возраста пульсара, "время замирания" увеличивается. Отскода следует, что радиопульсары "умирают" путем увеличения "времени замирания". Количественно такое поведение наблюдается в эволюционной картине пульсаров.

Ереванский государственный университет, Армения, e-mail: dsedrak@ysu.am mhayrapetyan@ysu.am

ABSORPTION OF MAGNETOSONIC WAVES IN THE CRUST OF A NEUTRON STAR. PULSARS' RADIO EMISSION

D.M.SEDRAKIAN, A.S.HARUTUNYAN, M.V.HAYRAPETYAN

The kinetic equation for the plasma in neutron star crust is solved in the relaxation time approximation. The values of the kinetic coefficients of the plasma are obtained in the range of the density $10^2 \cdot 10^{14}$ g/cm³. The propagation of magnetosonic waves in the crust of a neutron star is considered taking into account the various mechanisms of dissipation of wave energy. It is shown that the crust of a neutron star is transparent for the magnetosonic waves with frequencies $\omega \le 10^{11}$ Hz and the wave absorption decreases with increasing of the central density of the star. A mechanism of pulsar radio emission is proposed where the source is located on the surface of the star and has a size equal to the size of the magnetosonic wave-beam cross section. Some of the features of the radio emissionis explained - the spectral index and pulsars' cutoffs.

Key words: neutron stars: pulsars: radio emission

Д.М.СЕДРАКЯН И ДР

ЛИТЕРАТУРА

- 1. P. Goldreich, W. H. Julian, Astrophys. J., 157, 869, 1969.
- 2. P.A Sturrok, Astrophys. J., 164, 529, 1971.
- 3. M.A. Ruderman, P.G. Sutherland, Astrophys. J., 196, 51, 1975.
- 4. В.С.Бескин, УФН, 169. 1196, 1999.
- 5. D.M. Melrose, Young Neutron Stars and Their Environments. IAU Symposium, eds. F.Camiliio, B.M.Gaensler, 218, 2004, astro-ph/0308471.
- 6. Д.М. Седракян, Астрофизика, 30, 547, 1989.
- 7. Д.М.Седракян, А.Д.Седракян, ж. Экспер. Теор. Физ., 100. 353, 1991.
- 8. Д.М.Седракян, М.В.Айрапетян, Астрофизика, 55, 421, 2012.
- 9. А.Г.Багдоев. Л.М.Седракян, Астрофизика, 45, 63, 2002.
- 10. Д.М.Седракян, А.К.Аветисян, Астрофизика, 26, 489, 1987.
- 11. Дж. Займан, Электроны и фононы, М., Изд. Иностр. Лит. 1962.
- 12. I Easson, C.J. Pethick, Astrophys. J., 227, 995, 1979.
- 13. J.Sykes, G.A. Brooker, Ann. Phys., 56, 1, 1970.
- 14. Д.Г. Яковлев, В.А.Урпин, Астрон. ж., 57, 526, 1980.
- 15. V. Canuto, Astrophys. J., 159, 641, 1970.
- 16. Г.С.Саакян, Физика нейтронных звеза, Ереван, 1998.
- 17. Л.М.Седракян, А.С.Арутюнян, М.В.Айрапетян, Астрофизика, 56, 251, 2014.
- 18. D.M.Sedrakian, A.S.Harutunyan, M.V.Hayrapetyan, Journal of Physics: Conference series, 496, 012017, 2014.
- 19. R. B. Wiringa, V. Fiks, A. Fabrocini, Phys. Rev. C, 38, 1010, 1988.
- 20. N.Ippolito, M.Ruggieri, D.Rischke, A.Sedrakian, F.Weber, Phys. Rev. D, 77, 023004, 2008.
- 21, www.gravity.phys.uwm.edu/Code/rns
- 22. P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron stars 1: Equation of state and structure, New York, Springer, 2007.
- 23. D.A. Baiko, Journal of Physics: Conference series, 496, 012010, 2014
- 24. Р.Манчестер, Дж. Тейлор, Пульсары. М., Мир, 1980.