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A procedure for discovering periods in astronomical time series containing few observa­
tional data using simple mathematical operations is described. By selecting data close to the 
maxima or minima of the time series differences among these values around the maxima or 
minima are obtained to produce a set of intervals. Using a technique similar to the least 
common divisor and applying the maximum common denominator to the set of intervals 
approximate periods are found. The different ways to improve the periods found are presented. 
The procedure is applied to a simulated random sinusoidal data set and also to some data from 
binary and pulsating variable stars to show how the procedure is applied to different type of 
time series. The procedure is simple to use for any type of data spacing and with gaps and 
produces results in accordance with other methods.
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1. Introduction. Time series data are ordered sequences of measurements 
where successive values in the data represent consecutive measurements taken 
at equally or unequally spaced time intervals and with gaps. There are two main 
objectives of time series analysis: identifying the nature of the phenomenon 
represented by the sequence of observations, and predicting future values of the 
time series variables. Both of these objectives require that th^ behaviour of the 
observed time series data is identified and more or less formally described. Once 
the variation is established, one can use it in the theory of the phenomenon 
and we can extrapolate the identified variation to predict future events. Most 
time series patterns can be described in terms of two basic classes of components: 
trend and seasonality. The former represents a general systematic linear or 
nonlinear component that changes over time and does not repeat or at least 
does not repeat within the time range covered by the data. The latter may 
have a formally similar nature, however, it repeats itself in systematic intervals 
over time. Those two general classes of time series components may coexist 
in real-life data. The latter component can have periodic variations that is 
necessary to characterise to understand the phenomena at hand.‘The problem 
of finding periodicities in the time series of many types of observational and 
experimental data, and from a diversity of other phenomena have been studied 
in many papers in the past. There exist in the astronomical and time series 
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analysis a great number of methods and procedures to solve the problem of 
periodicities in the observations of many types of applications. Petrie [1] wrote 
at his time that no method exists to determine the correct period of a 
spectroscopy binary form observations taken many periods apart. Aitken [2] gives 
some references and recipes to find periods using plots of parts of the data and 
reversing them with respect to a fixed points to find close coincidences and the 
interval between two point is equal to the period. The need for precisely 
determining periods of cyclic phenomena is well known and numerous methods 
have been produced for evenly spaced data [3-5]. Lately the attention is centered 
in phenomena observed at irregularly spaced intervals and with gaps [6-9].

To help in the acquisition of new data in changing time series in general 
it is necessary to have an approximate period to select judiciously the times 
of further acquisition of new data, especially with few observations, in order, 
to determine a better period. A review of several techniques for uncovering 
periodicities in variable and binary stars can be found in an article by [10]. 
A simple procedure using the correlation between the time series and the 
remainders of the series with respect to the tentative period for equally 
distributed intervals is described by [11]. There are several period search 
algorithms in the literature [3,12-14], Least squares methods [15, 16], String 
Length Statistics [17], Fourier methods [18,6], Periodogram analysis 
[19,8,9,20,21], Fast Fourier methods for data unevenly spaced and with gaps 
[7], and Spline methods [22]. Variants of these methods and of some others 
can be found in the articles given in the references.

In this work we present a simple procedure useful to find approximate 
periods in astronomical time series that complements the methods mentioned 
before when the number of observations is small.

2. Procedure. This procedure can be used when one has few points of 
the time series and it is necessary to have an idea of the period in order to 
obtain further data to be able to get a better value of the period as mentioned 
before. Taking values close to the maxima (minima) of a given observed or 
experimental series for the purposes, in the one hand, to have few values for. 
computational convenience, and in the other hand, to assure that the maxima 
are taken into account at least approximately in order to define differences 
among these values. With these differences, it is possible to find with a variant 
of the least common denominator (LCD) which will satisfy the time intervals 
between these observations. Any such interval between the approximate maxima 
is related to the period in an average way. Each pair of corresponding phases 
gives a relation rz-rm «nP, where tt-tm is the interval, n is an integer, and 
P is the period. Also from those intervals using the LCD one can find 
submultiples of them, and with the results one obtains a value approximately 
common to all of the intervals that will give the estimated period. This very
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approximate period is used in the next step of our procedure. The intervals 
found above are also used to find the common greatest divisor (CGD) between 
any two such intervals. With all the CGD's found before the average of them 
is calculated, because the points are close to but not necessarily in the maxima 
(minima) of the series, and that result would represent the tentative period.

The mechanics of the procedure is the following, from the given time series 
data one searches for the maximum (minimum) value of the amplitude and 
defining a small interval around the maximum (minimum) value that can 
include enough values to be able to find a good approximate period as was 
mentioned above. Then calculating the differences of the values found before 
starting with the first with respect to the rest of the values and then with the 
second one with respect to the remaining values, except the second, and so 
on. With these intervals it is possible to find a tentative value for the period 
by dividing the first set of intervals by two as many times as necessary to obtain 
a set of numbers and then by three, and so on. The result of those divisions 
shows the numbers that are similar in size to each other giving the tentative 
period. This is the approximate period that will be used later as the stopping 
parameter in the quasi Euclidean procedure used to find the CGD. From the 
intervals obtained from the differences between all the values with respect to 
the first one are obtained. The first difference is used with all the other 
differences in the process of finding the CGD in order to obtain a series of 
numbers that are used to find the mean of those number that becomes the 
approximate period. In the process to find the CGD to stop the process, one 
uses the greatest number found above, in the function for that calculation. The 
pseudo code of the Euclidean algorithm for integer numbers is given by the 
following function.

Function CGD (a, b)
While b * 0 
t:=b 
b:=a mod b 
a:=t
Return a
For real numbers the stoping factor is different from zero in the While 

statement of this function and should be chosen carefully to have the appro­
priate range of values around the value found before in the LCD. This 
procedure can be carried out by simple hand calculations.

3. Improvement of the Period. There are several ways to improve the 
tentative period found above. The first and simplest procedure that we have 
used is that with the value of the period found before a phase diagram is plotted 
to see if it represents the observations correctly and changing the period slightly 
in such a way that one can appreciate the changes in the diagram until one 
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is satisfied with the plot, for example when the minimum of the curve is close 
to half of the phase. This procedure is the best for finding periods when one 
has few values of the astronomical time series, independent of the type of 
operations used in the calculation of the period. The periods found are good 
for the purpose of choosing the subsequent times of acquisition of new data 
and if one has more points of the time series one can refine the period by 
an approximate least squares method [23] to find a better period through a 
simple iteration process that we propose and is described in the following 
section. Also in this case, using more sophisticated methods one can find a 
better period [3,12,14], or using Spline [22], or Period 04 [24]. Of course, 
one can obtain more data to improve the period but sometimes that is not 
possible in observational data.

4. Examples for the use of the Procedure. In this section some 
analyses are made of some time series with the purpose of showing how the 
procedure is applied to some numerical simulations and several real observations 
of some known binary and variable stars reported in the literature.

4.1. Numerical Simulation. The numerical simulation is made for a 
sinusoidal variation with a given period with random data generated using a 
gaussian distribution [21]. The sinusoid is given by

y = Asin(wr+<p) (1)

with 

where P is the period, <p is the phase and R is the amplitude.
We have used a period of 2.5 days and an amplitude of 1.0 for the sinusoidal 

variation. Following our procedure we can recuperate the period without any 
problem, as we will show in this case. The data close to the maximum value 
are seven and are given in Table 1, the Julian Date TJ is given in days. The 
differences between the first value and the other six, and of the second value 
with the other five and so on are given in Table 2. Dividing the first six numbers

Table 1

VALUES CLOSE TO THE MAXIMA FOR SINUSOIDAL

TJ Amplitude

1 31.61425 0.9996352
2 16.63571 0.9996378
3 1.614091 , 0.9996241
4 19.13149 0.9998671
5 54.11985 0.9999163
6 59.13433 0.9997246
7 84.12874 0.9999558
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Table 2

DIFFERENCES BETWEEN THE VALUES FORMING GROUPS

Differences

1 14.97854 12 17.51740
2 30.00016 13 52.50576
3 12.48277 14 57.52024
4 22.50560 15 82.51465
5 27.52008 16 34.98837
6 52.51449 17 40.00285
7 15.02162 18 64.99725
8 2.495779 19 5.014484
9 37.48414 20 30.00889
10 42.49863 21 24.99440
11 67.49303

Table 3

THE FIRST SIX VALUES OF Table 2 IN THE FIRST ROW, 
IN THE SECOND ROW THE FACTORS, AND 

IN THE THIRD ROW THE RESULTS

14.97854 
6

2.49642

30.00016
12

2.500013

12.48277 
5

2.496554

22.5056 
9 

2.500622

7.520008 
11

2.501825

52.51449
21

2.50069

of Table 2 by two and then by three, then four, five, and so on, the same 
could be done with the other numbers to produce a list of numbers where 
some of them are almost equal. One way to carry out this process for simplicity 
is with the first and second numbers of Table 2 that can be divided by two 
and then by three and so on and then the other numbers are divided with

Table 4

RESULTS OF THE CGD IN THE SECOND COLUMN AND THE 
SUM IN COLUMN THREE

CGD SUM CGD SUM

1 2.523373 2.523373 11 2.590164 28.10745
2 2.539366 5.062738 12 2.613091 30.72054
3 2.562292 7.625031 13 2.649681 33.37022
4 2.598892 10.22392 14 2.543236 35.91345
5 2.542722 12.76664 15 2.566154 38.47961
6 2.495779 15.26242 16 2.602753 41.08236
7 2.543236 17.80566 17 2.518705 43.60107
8 2.566154 20.37181 18 2.555319 46.15639
9 2.602745 22.97456 19 2532393 48.68878
10 2.542723 25.51728
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those results to find the number of times they are divisible and then divide 
the number by those factors giving in Table 3. The greatest of these similar 
numbers in this case is around 2.5018. But at first sight one can see in Table 
2 that the period could be close to 2.495779. Applying the maximum common 
multiple with the pseudo Euclidean algorithm using the value of 2.5018 found 
in the last step multiplied by 0.8 as the stopping parameter to examine the 
results up to this quantity in order to have numbers of the order of 2.5018 
in this procedure, Table 4 is generated. The average value using the last value 
of column three of Table 4 divided by 19 is 2.562567. Plotting a phase diagram 
with this value for the period Fig.l is obtained. This phase diagram shows some 
scatter of the points around the theoretical curve which means that the period 
is close to the theoretical one but must be corrected.

Phase

Fig.l. Phase diagram for the sinusoidal with a tentative period of 2.562567.

4.2. Improvement of the period. The period can be improved in 
several ways as was mentioned before. The method of minimum least squares 
in its simplest formulation [23] can be applied to find a better period starting 
with the tentative period found before. For a three-parameter model, following 
the notation of [23], given by

x, = p.+^cos(wr/)+ Bsin(wr,)+ez, (3)

where x, and t։ denote the i,h values of the observations, w is the frequency 
and e, is the residual. The approximate solutions of the equations of the 
estimates of least squares for the model are

P = x = ^-. (4)
n

^ = 2Z(x/-^)cos(wt/), (5)



UNCOVERING PERIODS IN ASTRONOMICAL TIME SERIES 161

= E(xi + x)sin(wfJ. (6)

To find R and cp, the amplitude and phase we solve the above equations 
with

-4 = -7?sin(<p) (7)

and
5 = -7?cos(<p), (8)

therefore

R = /a2+B2 (9)
and

<p = arctanlI. (jqj

In these equations the frequency w is regarded as known. The method is 
extended to include the estimation of w following a simple iteration procedure 
starting with a smaller value than the approximate value found in the first part 
of the procedure presented in this article and defining the sum of squares of 
the residuals [23] as

e = ^R2 (H)

to carry out the iterations over frequency for all the equations given above we 
use the following expression

wn+i = wn+exlO՜3. (12)

The criteria for stopping the iterations is the value found for the approxi­
mate period. This iteration procedure gives good results in this case with respect 
to the theoretical period of 2.5.

4.3. Analysis of Some Observations. Some real observational time 
series are presented to show how the procedure to find the periods is 
implemented and to see how the principal steps involved in the procedure 
exhibit the intricacies of the mechanical flow of the operations.

4.3.1. Binaries. The analyses of three binary stars of different periods are 
presented to show the procedure for these type of time series.

The spectroscopic binary star 26 Aquilae has high orbital eccentricity where 
the primary component is of type G8 III-IV. There are fifty-one spectroscopic 
observations covering a 20 years interval. Fig.2 shows the plot of the 51 radial 
velocities [25]. Table 5 gives the six values close to the minima of the time 
series of 26 Aquilae, where the times are in days. The differences between the 
first value and the other five, and of the second value with the other four and 
so on are given in Table 6. Divide the first five numbers of Table 6 using
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Table 5

VALUES CLOSE TO THE MAXIMA FOR 26 AQUILAE

DJ DJ

1
2
3

22951.695
30908.668
32015.820՛

-11.100
-10.030
-10.740

4
5
6

32036.832
33372.023
33397.984

-9.070
-10.870
-10.720

Fig.2. Observational radial velocity curve for 26 Aquilae.

the same procedure mentioned before in the sinusoidal case to produce a list 
of numbers where some of them are almost equal are given in Table 7. The 
greatest of the similar numbers in էհե case ե around 267.85. Applying the 
maximum common multiple with the pseudo Euclidean algorithm using the 
value of 267.85 found in the last step multiplied by 0.8 as the stopping 
parameter to have numbers of the order of 267.85 in this procedure, Table

Table 6

DIFFERENCES BETWEEN THE VALUES FORMING GROUPS

Differences

1 7956.973 9 2489.316
2 9064.125 10 21.01172
3 9085.137 11 1356.203
4 10420.33 12 1382.164
5 10446.29 13 1335.191
6 1107.152 14 1361.152
7 1128.164 15 25.96094
8 2463.355
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Table 7

THE FIRST FIVE VALUES OF Table 6 IN THE FIRST ROW, 
IN THE SECOND ROW THE FACTORS, AND

IN THE THIRD ROW THE RESULTS

7956.973 
30 

265.23

9064.125 
34 

266.592

9085.133 
34 

267.21

10420.33 
39 

267.19

10446.29
39 

267.85

Table 8

RESULTS OF THE CGD IN THE SECOND COLUMN AND THE 
SUM IN COLUMN THREE

CGD SUM CGD SUM

1 279.5273 279.5273 8 213.3477 2452.113
2 395.0742 674.6016 9 21.01172 2473.125
3 281.9219 956.5234 10 321.6719 2794.797
4 307.8828 1264.406 11 347.6328 3142.430
5 279.5273 1543.934 12 300.6602 3443.090
6 300.5391 1844.473 13 326.6211 3769.711
7 394.2930 2238.766 14 25.96094 3795.672

8 is generated. The average value using the last value of column three of Table 
8 divided by 14 is 271.1194. Plotting a phase diagram with this value for the 
period Fig.3 is obtained. This phase diagram shows some scatter of the points 
with a well defined curve which means that the period is close to the real 
one but even so it must be corrected. The period can be improved in as was

0

-20

"w՜ 

E
JC
~ -40
>

/ -60

0 0.2 0.4 0.6 0.8 ’ 1

Phase

Fig.3. Phase diagram for 26 Aquilae for radial velocities with the period 271.1194.



164 O.CARDONA ET AL.

mentioned before. With the curve fitting method one finds a period of 266.995 
days and the period given by [25], and [26] is 266.544 and 266.7 by Spline.

The spectroscopic binary star HD 145425 is located in Serpens Caput with 
magnitude 9.5 and spectral type KO with forty-six radial velocities observed [27]. 
There are eight values close to the maxima. Following the procedure, the greatest 
of the similar numbers in this case is around 564.813. Applying the maximum 
common multiple with the pseudo Euclidean algorithm using the value of 
564.813 found in the last step multiplied by 0.7 as the stopping parameter to 
obtain numbers of the order of 564.813 in this procedure. The average value 
is 550.2391. The period can be improved using the curve fitting method giving 
550.963 and 550.134 with Spline. The value given by [27] is 549.9.

The spectroscopic binary star HD 217792 of magnitude K=5.10 and 
spectral type FOV has fifty-two radial velocity observations [28]. The data close 
to the maximum value are 14. Continuing with the procedure, the greatest of 
the similar numbers in this case is around 181.794. Applying the maximum 
common multiple with the pseudo Euclidean algorithm using the value of 
181.794 found in the last step multiplied by 0.8 as the stopping parameter to 
have numbers of the order of 181.794 in this procedure. The average value 
is 177.7688. The period can be improved giving 178.053 with the curve fitting 
method and 178.316 with Spline. The value given by Bopp et al. is 178.3177.

4.4. Variable Star. This classical cepheid star BK Centaurus has 49 
observations that show a beat period [29]. The data close to the maximum 
value are 12. The greatest of the similar numbers in this case is around 3.218. 
Applying the maximum common multiple with the pseudo Euclidean algorithm 
using the value of 3.218 found in the last step multiplied by 0.8 as the stopping 
parameter to have numbers of the order of 3.0 in this procedure. The average 
value is 3.152659. The period can be improved in several ways giving 3.218 
with the curve fitting method, 3.166 with Spline, and 3.17389 by Leotta-Janin.

Results, tables and figures for the spectroscopic binary stars HD 145425 
and HD 217792, and the variable star BK Centaurus are given in [30].

5. Comparisons with Other Methods. This simple procedure produces 
approximate periods using elementary mathematical operations as are the 
analogues of the least common divisor and the greatest common divisor, hence 
can not be compared with more elaborated methods, but even so one can find 
approximate periodicities in unevenly spaced data containing gaps for few data 
points of the observational time series. In the examples given above the number 
of points close to the maximum or minimum are 7, 6, 8, 14 and 12 
respectively for the numerical experiment and for real observations of three 
spectroscopic binaries and a variable star. With those small numbers of data 
points this procedure can handle without any problem the search for periodicities, 
something that most of the methods mentioned in the body of the article can 
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not solve. Therefore, this procedure is the best for finding periods when one 
has few values of the astronomical time series, independent of the type of 
operations used in the calculation of the periods. The approximate periods can 
be found by hand calculations something that can not be done with most of 
the other methods mentioned in this work. When one has at hand more points 
of the time series and with the approximate periods found one can use any 
of the other methods to improve these tentative periods as we have done with 
the curve fitting procedure by the approximate least squares method. The results 
for the cases considered in this article compare well with the results obtained 
with other methods. And also when one has more data points one can consider 
the procedure as complement to some of the other methods because the period 
found could be used as the starting search for periodicities for those more 
elaborated methods. This procedure can be used to find other periods in the 
same time series eliminating the period found before from the numbers 
obtained in the first part of the process and then one can repeat the procedure 
again to search for another period, and so on for multi-periodic data.

6. Conclusion and Commentaries. The procedure for finding periods 
for few observational data uses the values close to the maxima of the 
observational time series to apply something like the least common divisor to 
find an approximation of the period that can be used in a procedure similar 
to the Euclid's procedure to find the greatest common divisor but with a 
stopping parameter different from zero that can be obtained from the approximate 
period found before multiplied by a small fraction to produce values close to 
the approximate period. As the points close to the maxima are approximations 
to the maxima (minima) of the series and can fall in either side of the 
maximum, therefore it is necessary to take an average of the values found with 
the CGD to obtain a value close to the true period. This value can be improved 
with different techniques as mentioned previously. We use the curve fitting 
method by least squares with a three-parameter model iteratively. The procedure 
produces good results for predicting in an approximate way the periods 
necessary for forecasting the evolution of an observed time series with the 
purpose of aiding in choosing the future observational times of the phenomena 
under study. The procedure produces results in agreement with the results 
produced by other more elaborated methods.

Institute Nacional de Astrofisica, Optica y Electrdnica. Mdxico, 
e-mail: ocardona@inaoep.mx angeles@inaoep.mx mreyes@inaoep.mx
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ВОССТАНОВЛЕНИЕ ПЕРИОДОВ 
АСТРОНОМИЧЕСКИХ ВРЕМЕННЫХ РЯДОВ С 
ПОМОЩЬЮ МАЛОГО КОЛИЧЕСТВА ДАННЫХ

О.КАРДОНА, М.АЛОПЕЗ-КАСТИЛЛО, М.РИЕС-МУНОЗ

Описывается процедура нахождения периодов астрономических 
временных рядов, содержащих малое количество наблюдательных данных, 
с использованием простых математических операций. Выбирая данные, 
близкие к максимумам и минимумам временных рядов, с целью создания 
набора интервалов, вычислены разницы между этими значениями вокруг 
максимумов и минимумов. Приблизительные значения периода получены 
с помощью метода, похожего на метод наименьшего общего делителя, 
определив для полученного набора наибольший общий знаменатель. 
Представлены разные пути для уточнения полученных периодов. С целью 
иллюстрации применения метода для различных временных рядов, эта 
процедура применена к случайным синусоидальным данным, а также к 
некоторым данным двойных и пульсирующих переменных звезд. Процедура 
проста для использования к любым данным с разрывами и дает результаты, 
которые согласуются с другими методами.

Ключевые слова: астрономические временные ряды: наблюдательные 
данные
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