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We discuss an extension of the time-dependent Ginzburg-Landau equations for rotating 
two-flavor color superconducting quark matter derived earlier. The extension treats the coeffi­
cient of the time-dependent term in the Ginzburg-Landau equation as complex number, whose 
imaginary part describes non-dissipative effects. We derive time-dependent London type equation 
for the color-electric potential which obtains an additional time-dependent contribution from 
this imaginary part. This additional term describes non-dissipative propagation effects. In addi­
tion we derive general expressions for the energy flux and the dissipative function of the system.
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1. Introduction. The Ginzburg-Landau (hereafter GL) theory of super­
conductivity has been very successful in describing semi-phenomenologically 
the properties of a variety of condensed matter systems, such as the electronic 
superconductors, liquid 3He phases, etc. It has been applied to color supercon­
ducting matter both in the early stages of development [1] and more recently 
in Refs. [2-6]. The latter references discuss in detail the equilibrium GL 
theories for key, robust color superconducting phases, such as the two-flavor 
color superconducting phase (2SC) and the three flavor color-flavor-locked 
(CFL) phase. The 2SC phase features a condensate of quarks paired in color 
and flavor anti-triplet state, i.e., the red up quarks pair with green down quarks, 
etc., whereas the blue quarks remain unpaired.

In our previous work [7] we have developed a non-equilibrium Ginzburg- 
Landau approach to the rotating 2SC color superconducting matter. We have 
introduced a time-dependent term in the GL equations, which takes into 
account the relaxation of the order parameter of the condensate. This term has 
a universal form, but it contains a real phenomenological coefficient, which 
encodes the microphysics of transport and dissipation in the condensate under 
consideration. We have estimated the value of էհե term in the case of the 2SC 
condensate, using the analogy between էհե condensate and the Bardeen- 
Cooper-Schrieffer (BCS) condensate of the superconducting electrons. This 
analogy is natural because pairing in both cases occurs in a state of zero total 
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angular momentum and even parity. In the 2SC phase the blue quarks are 
assumed to be unpaired, so that they can scatter Cooper pairs inelastically.

In the case where the condensate is rotating we have to incorporate in the 
GL equations the homogeneous magnetic field (London moment) [8], which 
is due to Coriolis force and the inhomogeneous electric field [9], which 
balances the centrifugal force. The time-dependent treatment of the problem 
requires explicit consideration of the electric fields in a superconductor, which 
need to be included into time-dependent GL formalism.

In this work we will include additional contribution of the centrifugal force 
in the time-dependent Ginzburg-Landau (TDGL) equation of the 2SC con­
densate. In rotating superconductors the centrifugal force induces the scalar 
potential of electric field and renormalizes the chemical potential, which in 
turn changes the critical temperature and the coefficient a in the GL equation. 
In order to preserve gauge invariance the correction of a must be added in 
the time-dependent term.' Therefore the phenomenological coefficient of the 
time-dependent term acquires an imaginary part. It is էհե modification that 
we address in էհե‘work, where we modify the time-dependent Ginzburg- 
Landau (TDGL) equation by considering the constant in front of the time­
dependent term to be complex number. The imaginary part of էհե coefficient 
ե due to non7dissipative forces, therefore in modified TDGL equation appears 
an propagating term, whereas the dissipative function remains unaffected.

Ոստ paper ե structured as follows. In Sec. 2 we review the time-dependent 
GL equations for non-relativistic rotating electronic superconductors. In Sec. 3 
we derive explicit equations for the energy flow and the dissipative function using 
time-dependent GL equations. The equations of the previous sections are 
generalized to the case of the 2SC color superconductor in Sec. 4. Our 
conclusions are summarized in Sec. 5.

2. Time-dependent GL equations for a non-relativistic electronic 
superconductor. Before discussing the case of 2SC superconductors, we would 
like to start with a discussion of the modifications needed for a more familiar 
system - the electronic superconductor. The case of the rotating superconductor 
and the corresponding TDGL equations were derived and discussed in Ref. [7]. 
The requirement of gauge invariance of TDGL equations for a non-rotating 
electronic superconductor leads to substitution of hd/dt by a term of the form 
[10] A3/5f+2fe$(r,r), where Փ = ֆ+յւ/տ. Here Փ ե scalar potential of electric 
field, p ե the tocal chemical potential of the superconductor, e is the electron 
charge, e<0. Փ may be identified as the electrochemical potential divided by 
the electronic charge e. The effects of magnetic field are included by replacing 
AV by HV֊(2ie/c)A(r,/), where A(r,r) ե vector potential of magnetic field. 
The time dependence of the order parameter A(r,t) in equilibrium ե given by
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A(r,/) = A(r)cxp(-2j>f/ft). (1)

A gauge transformation consists in the simultaneous substitutions

A -> Aexp[(2ie/ftc)<p], A->A + V<p, (2)
c dt

where <p is an arbitrary scalar function. Therefore, the gauge-invariant TDGL 
equation for the order parameter of a non-relativistic and non-rotating elec­
tronic dirty superconductor have the following form [10]

^■+^ï|A = aA + ₽|A|2A-Y</fftV-^A՝| A, (3)

where the coefficients a, 0 and yd of time independent G1 theory are [11,12]
T-Tc „ 7Ç(3) nvD
a =----- - v > 0 = , v, =---------

Te ^kBTcy tokBTc (4)

Here D = i>Fe-r/3 is the diffusion coefficient, vFe is the electron Fermi velocity,
t is the electronic mean free time due to scattering by impurities, 
v = OTepFe/27t2^3 is the density of states at the Fermi surface, mt is the electron 
mass, is the Fermi momentum, T is the temperature and T is the critical 
temperature, kB is Boltzmann constant, £(3) is Riemann zeta function. The 
relaxation parameter T in systems with the strong inelastic scattering has been 
derived from the microscopic theory in Ref. [10] as

The total current j, is the sum of the supercurrent defined as

j, =2ie^(AVA։ -A’Va)-^^-|a|2 A, (6)

and the normal current j„=onE, where an=2De2v is the electrical con­
ductivity of normal electrons in the dirty limit. The normal current is induced 
by the effective electric field E [10]

E(r,r) = -l^l-V*(r,r). (7)

Consider now a rotating superconductor. In the rotating reference frame 
chemical potential pr is defined as [13]

The Coriolis force does not influence the thermodinamic properties of the 
rotating superconductors. Therefore in the rotating reference frame the elec­
trochemical potential is renormalized as follows [7]

~ ~ ~ m, Q2 r2
<|> ֊> <|>r = <t>—, (9)Ze
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and vector potential is renormalized in the following way [14,15]

A ֊►A, =A + -^[Qxr]. 
e (10)

Therefore the TDGL equations for a uniformly rotating dirty superconductor 
will become [7]

2

dt h
2j’e| t

<l>-
meQ2r2 

2e
A = aA + p|A|2A—yJftV-^ A+^[Qxr] • 

1 ne A(ll)d

jd =2ieftyd(AVA’-A*VA)-^-|A|2 A+^[flxr] 
c &

ISA „r -------+ V<b-
c dt

m.Q.2 (12)
r

Je

The explicit treatment of the electric field in the moving superconductors 
requires a modification of TDGL equations, namely, the relaxation parameter 

*r is modified from purely real to a complex number [16,17]
r=r+/r'. (13)

The origin of an imaginary part of T is as follows [18]. It is known that 
a moving vortex induces a scalar potential proportional to vortex velocity. The 
induced potential adds to chemical potential of the superconductor

p = p0-e<|». (14)
On the other hand, the critical temperature depends on the chemical potential, 
therefore the coefficient a becomes

T
t.

3a , f
a = a0֊—e* = -v 1

3p I
v 3TC . --------eè. 
Tc dv. (15)

The critical temperature in BCS theory is Tc = QBCSexp(- 1/A.), where is 
the cut-off energy of pairing interaction, X = |g|v, g is coupling constant. 
Therefore correction to a becomes

x 1 x
(16)

In order to preserve a gauge invariance the correction should be written in the 
form

- . . ft SvfSA 2ie
2A.3pl.3r ft * J’ <17)

which implies that the coefficient r (13) has an imaginary part

r*_ h
2X3p‘ <18>

In the rotating frame of reference the chemical potential of superconductor (8) 
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may be written in the form (14). Therefore the TDGL equation of the rotating 
.superconductor will also be modified.

The authors of Ref. [17] have derived modified TDGL equations within 
the BCS model of superconductivity for the case of weak pair breaking 
xkBTc»h, where r is the characteristic pair-breaking time. This time can 
be identified with the inelastic electron-phonon collision time or the spin-flip 
time. For their equations to be valid the condition tA«/r must also be 
fulfilled. This corresponds to the case of dirty superconductors or the super­
conductors with small concentration of paramagnetic impurities. The modified 
TDGL equation has the form of equation (3), where complex parameter r 
is represented by the expression (13). This equation has been used to explain 
the sign change in the Hall effect in both conventional and high temperature 
superconductors. The coefficient T' is given by formula (5), while the imagi­
nary part f' is defined as [17]

r_ a(i+x) dv
2 X eV (19)

where £,p=ep-EF, tp is the quasiparticle spectrum and eF is the Fermi 
energy. For the case of parabolic spectrum the imaginary part becomes

2 f t \ mi ith4n2A2pF|<2pF|a|+ J’ (20)

where a = m\g\/4nh2 is the s-wave scattering length. In the BCS model the 
first term in brackets is much larger than unity. The modified TDGL equation 
was derived in Ref. [19], where imaginary part contains only the second term 
of (20). The same work also discusses the crossover from BCS superconductivity 
to Bose-Einstein condensation. In closing we note that the ratio of the 
imaginary to the real part of T

F = 2kBTe( nh Ա
Ր iœF ^2pF|a| , (21)

is a small quantity for the model discussed above.

3. The energy balance. In էհե section we consider the balance of the 
free energy of a superconductor in an electromagnetic field. The free energy 
F of the superconductor consists of the free energy of the electromagnetic 
field and the free energy difference F* between superconducting and normal 
state. The free energy Fm of the electromagnetic field is given by

^=֊ \{H2+E2)dV. (22)
• 071

The free energy difference F* is given by the expression of Ginzburg and 
Landau [20]
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2

(23)

where coefficients are defined by (4). The modified TDGL equation for the 
order parameter has the same form as the original TDGL equations, however 
the coefficient T is now à complex function

V3A 2ZerA>| 5^, 
SA* ’ (24)

whereas its conjugate equation reads

dt h J SA (25)

The supercurrent j, is defined as follows 
j, SF„

c dA (26)

We will need the following two non-stationary Maxwell equations in the
followings

rotE =
4n. 1 <5E rotH = —j+------ ,
c c dt

where

H = rotA, E = --—. 
c dt

(27)

(28)

c dt ’

Next we calculate the time-derivatives of the free energy of the system; the 
derivative of the free energy of the electromagnetic field is

^L=f(-divS-j-E)rfr, (29)

where S = (c/4tt)[ExH] is the Pointing vector. Furthermore,

= [ dAdFsn 
dt J dt SA

SA* 5Fm SA 8 F 
dt SA* Sr SA

dV+ Jdiv jF dV,

where j£ is given by

. .2 dAf 2ie A » dA* Z' 2ie . V
=yX 7֊ V+TTA A A Adt I he J dt I he ]

2ie dA՝ 2ie
he dt he

(30)

(31)

Using Eqs. (24X (25), (26) and the relation
2ie 
~h A*

SA՛ SA
= divj,

we transform the expression of Eq. (30) to the following form
f/-i flÊï'l 

dt J] J\c3rJ
~2r,^-+-^-<l»A +$divj։ dV+ fdivjFdK. 

Ot n J

(32)

(33)

A8Fm

2
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Finally, adding eqs. (29) and (33), we obtain the energy balance equation

^֊ = -fwW-֊fdivj£dK, (34)

where the free energy current is

jg =֊Jf L +S, (35)
and the dissipation function is

2
JF = 2r' —+—M +Q, 

dt h
1 5A

c dt

2
-+V$ (36)n

where the first term describes the energy loss due to relaxation of the order 
parameter while the second term is associated with the Joule heating by the 
normal currents. Eq. (36) shows that only the real part of coefficient T is 
relevant for the dissipative function. Its imaginary part appears enters the non- 
dissipative forces. To demonstrate this, we write the order parameter in the form 
A = |A|exp(;’x) and calculate the variation of the free energy with respect to the 
phase of the order parameter

öx ÔA
8Fm
5A*

h ■ 
֊—div j,.

4e (37)

Using Eqs. (24) and (25) we obtain from Eq. (37)

r'ö|A|2 ft ֊
------- O- =—CT.divE

2 dt 4e n
(38)

where gauge invariant scalar potential <D = <ji+(ft/2e)(dx/3r) and in the last term 
we used the conservation of the net current. Then with the help of definition
of effective electric field (7) we obtain following equation

, 8e2T'|A|2 I. 3Q 2er՛ ô|a|2
v-o------_□ - <d = —div—+----------։֊։֊,

ft2o„ c dt fta„ dt (39)

where gauge invariant vector potential is defined as Q = A֊(cft/2e)Vx. In the 
stationary limit fyJdt = Q, dK/dt = Q, S|A|/3r = 0 we obtain London type 
equation for scalar potential

(40)

where we defined a new characteristic length

» CTn
ie2VA20) (41)

which can be interpreted as the penetration depth of d.c. electric field into 
a superconductor. Here the order parameter for time-independent homogeneous 
state Ao is

dF„ 2eTjA|2

dx »
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f aV2 F 8 C T-rYf2 , _
A°"[ p J 7^3) [ tc J * B e՛ (42>

Therefore the modified TDGL equation for the order parameter for a uniformly 
rotating dirty superconductor takes the form of Eq. (11) with the complex 
parameter T defined by (5), (13) and (19). In the dissipation function (36) 
potentials <j> and A must be replaced by the <j»r (9) and Af (10), while in 
eq. (39) scalar potential <D must be replaced by = <b-meQ.2r2/2e.

4. 2SC color superconductor. We now establish the modified TDGL 
equations for the rotating 2SC color superconductor by using the analogy to 
the ordinary dirty superconductors [7]. Because a 2SC superconductor contains 
an admixture of blue quarks we have assumed that there will be some degree 
of inelastic scattering among quark Cooper pairs and unpaired blue quarks. Less 
important scattering is expected due to the electromagnetic interactions of the 
Cooper pairs with the normal electrons. Combined these interactions will be 
the source of destruction of the coherence among quark Cooper pairs [6]. The 
physical picture is analogous to the case where impurities act to destroy the 
coherence among the electronic Cooper pairs in dirty superconductors. Then 
modified equation for the order parameter of the uniformly rotating 2SC 
condensate is

2

Idt (43)

where the modified potentials are

♦i =♦։+“y^Tq2,,2> A' = A*+7^[Orl’ (44)
q 3qc 3 cq

where = is the order parameter, 4>g is the scalar potential of the color 
electric field of the eight gluon, vector potentials of the "rotated" fields A։ and 
Ar are given by [21]

Ax = -sinQM A.+cos9M Ag, (45)

A>=cos0wA + sin0JkAg. (46)

In Eq. (44) we have used the fact that electric mixing angle 0D in the 2SC 
phase vanishes [22]. The magnetic mixing angle is given in terms of electrical 
charge e and strong coupling constant g as

(47)

and q = <Je2+3g2 /3 is the charge of Cooper pair. Coefficients a, p and yd 
have their values given by Eq. (4), while the density of states and the diffusion 
coefficient in these equations are given by v = p.pF/n2h3 c2 and D = v2Fxq/3-,
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where rq is the time-scale for the inelastic scattering of Cooper pairs with 
blue quarks and electrons. We expect that this time-scale should be roughly 
of the order of the momentum relaxation time-scale of the two counter­
streaming quark matter beams [23]. The coefficient T is complex (13), where 
T' is defined by (5) with quark's density of states, while imaginary part I” 
is given by

_ („2*3 „2 APp 71 n C ,
*2a2c2|jg|jipF + J՜ (48)

Here we have used Eq. (19) and £ = cp-p; where n = cpp is chemical potential 
of ultrarelativistic quarks. The imaginary part T' is small because the ratio 
of the imaginary and real parts of T is

_ r SkBTc(n2h3c2 / 

I՝ «P J

The second TDGL equation for the net current is given by

= 2 iq *td(cT V d- dV d*)- A'x + a,E’,

(49)

(50)

where is the electrical conductivity of normal quark matter [23] and we 
have defined effective electric field E' as

, 1 3A'X Vp 2p 2E=------f— V4>8-----1+—5֊Q2r. (51)
c Ct q 3q<r ՝ '

The modified TDGL equations define the relaxation times for the order 
parameter xd and for color magnetic field ry as

<52)

where t/0 is given by Eq. (42). The dissipative function, which corresponds to 
Eq. (43) is given [by the analogy with (36)] as

2
IP=2r ———^d + crE'2. 

dt h8 9 (53)

The first term in Eq. (53) describes the energy loss due to relaxation of order 
parameter, while the second is associated with Joule heating of normal currents. 
Upon writing the condensate order parameter in terms of its modulus and phase 
we rewrite the dissipation function in the form 

+ g,E'2 (54)

which separates the contributions due to the relaxation of the magnitude and 
phase of the order parameter. Another interesting relation is obtained if we use 
the relations
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Vpl?_‘r87)=divh’ (55)
n ba ba )

where F the free energy difference between superconducting and normal state
defined as

+J-(rotAJ)2+֊(rotA>.)2 dV. (56) 
oTT oTt

We now calculate the term in the left hand side of eq. (55) using modified
equation for the order parameter (43) in the following form 

_/ iq 8F
<57>

and its conjugate one
r.(dd* 6 F

"r =T7-dt h j od (58)

Writing again the condensate order parameter in terms of it modulus and phase 
we obtain following relation

(59)

We next introduce the following gauge invariant potentials = <|>g +(h/q)(fy,/dt) 
and Qd = A՞, -(c and use net current conservation to derive the following 
equation

C dt Gqh dt (60)

In the stationary limit 5x/3r = 0, dk/dt = Q, ^d\/dt = Q we obtain-London 
type equation for scalar potential

“0
(61)

where we defined the penetration depth of static color electric field into the 
2SC phase as

( _ „2 AV2 
= —q-—- .

(62)

We now estimate time-scales for which our modified TDGL equations are 
applicable. For the zero temperature energy gap of the order of 25 MeV critical 
temperature Tc = O.57Ao = 14.2 MeV. The condition of weak pair breaking [24] 
xkBTc » is fulfilled if the inelastic quark-quark collision time t > 4.3x 10՜19 s.

5. Concluding remarks. To summarize, we have modified the time­
dependent Ginzburg-Landau equations for the rotating 2SC quark superconductors 
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derived earlier by us in Ref. [7]. The key idea is to account for possible 
imaginary part of the coefficient of the time-dependent term in the non- 
stationary GL equation. Such extension is motivated by the studies of electronic 
superconductors in metals. We have shown that the dissipative function of the 
system remains unchanged, whereas the non-stationary London equation for 
the color-electric field acquires an additional time-dependent term, which 
however vanishes in the stationary limit. We have derived only general 
expression without specifying the details of the problem, such as the geometry 
or the initial conditions. We anticipate that the formalism developed here can 
be applied to model the dynamics of the 2SC phase in massive compact stars, 
where it can occupy a substantial part of the star's volume (see e. g. [25]).
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РАСШИРЕННЫЕ ВРЕМЕННЫЕ УРАВНЕНИЯ 
ГИНЗБУРГА-ЛАНДАУ ДЛЯ ВРАЩАЮЩИХСЯ ДВУХ
АРОМАТНЫХ ЦВЕТОВЫХ СВЕРХПРОВОДНИКОВ

К.М.ШАХАБАСЯН1, М.К. ШАХАБ АСЯН1, А.Д.СЕДРАКЯН2

Мы обсуждаем расширение полученных ранее временных уравнений 
Гинзбурга-Ландау для вращающейся двухароматной цветовой сверх­
проводящей кварковой материи. Это расширение рассматривает коэффициент 
в зависящем от времени слагаемом в уравнении Гинзбурга-Ландау как 
комплексную величину, мнимая часть которой описывает недиссипативные 
эффекты. Мы получили временное уравнение типа уравнения Лондонов 
для цветового электрического потенциала, которое содержит добавочный 
вклад от этой мнимой части. Это добавочное слагаемое описывает недис­
сипативные эффекты распространения. Мы получили также общие 
выражения для потока энергии и диссипативной функции системы.

Ключевые слова: нейтронные звезды: теория Гинзбурга-Ландау:кварковая 
материя-.сверхпроводимость
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