К ВОПРОСУ О РАДИУСАХ АСТРОСФЕР

А.Г.ЕГИКЯН

Поступила 24 октября 2012 Принята к печати 1 марта 2013

Показано, что характеристики астросфер конвективных звезд-карликов - радиусы, темпы потери массы звездами и скорость установившегося истечения связаны вытекающими из размерностных соображений простыми аналитическими соотношениями с основными параметрами звезд - с их массой, радиусом и скоростью вращения. В качестве примера рассчитаны темпы потери масс 12 ближайших к Солнцу холодных звезд-карликов. и радиусы 29 астросфер.

Ключевые слова: астросферы:звездные ветры:вращение звезд

1. Введение. Гидродинамическое расширение корон звезд Главной последовательности (ГП) промежуточных и поздних классов обуславливает потери масс в виде звездных ветров, взаимодействие которых с окружающей межзвездной средой устанавливает формы и размеры так называемых астросфер (по аналогии с гелиосферой) [1]. Наиболее точно гелиосфера описывается в модели с двумя ударными волнами [2], в рамках которой современные рафинированные численные модели хорощо согласуются с экспериментальными данными [3], причем сама гелиосфера определяется как поверхность, где динамическое давление сверхзвукового солнечного ветра становится равным суммарному давлению набегающих атомов и ионов окружающей Солнце локальной межзвездной среды (LISM). В отличие от гелиосферы, наблюдательные данные параметров большинства астросфер не известны вообще, либо определяются посредством модельных расчетов [1,4]. В то же время желательно иметь представление об изменении радиусов астросфер вдоль ГП в зависимости от главных параметров звезды, массы M, радиуса R, угловой скорости и давления, обусловленного окружающей звезду межзвездной средой, P_{rsr} Дело в том, что открытие большого количества экзопланет, в том числе и землеподобных, сделало задачу определения границ "зоны обитания" достаточно интересной и актуальной [5]. С физической точки зрения задача подразумевает, в первую очередь, определение границ существования жидкой воды и "благоприятной" радиационной обстановки на поверхностях землеподобных планет. Ясно, что и то, и другое определяются (по аналогии с Солнечной системой) светимостью звезды и параметрами звездного ветра. Не менее

интересна и актуальна проблема границ астросфер звезд нижней части ГП, время от времени проходящих через плотные молекулярные облака [6,7]. В силу своей (наибольшей среди всех звезд) большой пространственной плотности, это явление достаточно частое: в диске Галактики через каждое молекулярное облако раз в несколько десятков-сотен тысяч лет проходит, по крайней мере, один карлик А-М классов с относительной скоростью 10-20 км/с, причем, чем более позднего типа звезда, тем меньше время между двумя последовательными прохождениями [7]. При этом взаимолействие излучения звезды и звездного ветра с веществом облака, даже при низких светимостях, влияет на состояние вещества облака, важное для задач астрохимии и астробиологии [7]. Настоящая статья посвящена вопросу получения простой аналитической оценки размеров астросфер и их изменения вдоль ГП, в зависимости от основных параметров звезд.

2. О зависимости темпа потери массы звезды от скорости ее вращения. В настоящее время общепринято, что магнитная активность, вращение и потеря массы конвективных звезд ГП взаимно связаны [8]. Известно также из наблюдательных данных молодых скоплений (α Per, Плеяды, Ѓиады), что Ω , угловая скорость звезд, подобных Солнцу, меняется со временем, согласно [9, и ссылки там]

$$\Omega \sim t^{-0.6\pm0.1}.\tag{1}$$

Рентгеновские наблюдения звезд, подобных Солнцу, выявили эмпирические связи между потерей массы и активностью, равно как и между активностью и возрастом, комбинация которых дает следующее эмпирическое соотношение [9,10]:

$$\dot{M} \sim t^{-2.26 \pm 0.53}$$
 (2)

Объединив соотношения (1,2), получим для молодых звезд ($t \approx 0.05 - 0.5$ млрд лет)

$$\dot{M} \sim \Omega^{\alpha}, \quad \alpha \cong 4.$$
 (3)

Таким образом, скорость потери вещества звезд в молодых скоплениях меняется как 4-я степень угловой скорости. Неизвестно, корректно ли это соотношение (с $\alpha \approx 4$), независимо от возраста для всех звезд ГП, у которых конвекция является доминирующим механизмом возбуждения звездной активности [9-11], однако, возможно, что оно верно при других значениях α . Тогда именно такое функциональное соотношение и можно использовать для оценки \dot{M} вдоль ГП, когда из наблюдений известны только параметры вращения звезды. Дело в том, что прямое определение \dot{M} из наблюдений пока невозможно, особенно для удаленных звезд [4,10,11], поэтому вышеотмеченные авторы используют результаты модельных вычислений замагниченного коронального ветра. Следует подчеркнуть, что используемые в таких вычислениях наблюдаемые значения магнитных

полей весьма неуверенные из-за неточно определяемых значений скважности f (фактора заполнения): даже для Солнца она известна с точностью до порядка величины ($f_{\odot} = 0.001 - 0.01$ [11]), а в моделях используется значение f^2 . К тому же в [11], при расчетах M постулируется, что величина установившейся скорости истечения меняется вдоль ГП как параболическая скорость у фотосферы (в основании короны), что не совсем корректно (см. ниже, разд. 3). В то же время данные по вращению более доступны, особенно, полученные посредством наблюдаемых периодов, неотягощенных, в отличие от значений скоростей вращений, эффектами проекции [11]. Разумеется, проверка соотношения (3), или ему подобного, и установление ее точности прямыми наблюдательными данными звезд промежуточных и поздних классов ГП весьма желательна. С учетом сказанного выше, имеет смысл получение соотношения (3), возможно, с другими значениями а, из самых общих соображений. В частности, ее можно получить и посредством элементарных размерностных оценок, точных по порядку величины [12]. Действительно, предположим, что явления (магнитной) активности, вращения и потери массы звезд ГП взаимно связаны и задаются пятью определяющими параметрами M, R, \dot{M} , V_{m} и G, где V_{m} - скорость вращения звезды и G - гравитационная постоянная. Число этих параметров больше числа основных единиц измерения в системе СГС на 2, значит, на основании известной π -теоремы существуют только две безразмерные комбинации определяющих параметров, C_1 и C_2 [12], что позволяет сразу же выписать следующие соотношения

$$\dot{M} = C_1 \frac{M}{R} \sqrt{\frac{GM}{R}} \,, \tag{4}$$

$$V_{rot} = C_2 \sqrt{\frac{GM}{R}}, (5)$$

где $C_{_1}$ и $C_{_2}$ - безразмерные постоянные. Из этих уравнений следует, что

$$\dot{M} \sim M \frac{V_{rol}}{R} \sim M \Omega.$$
 (6)

Поскольку M со временем для звезд ГП не меняется, получаем (3) с $\alpha = 1$. Соотношение (6) можно использовать для оценки M вдоль ГП, а ее точность можно оценить при наличии прямых наблюдательных данных величины M. Точность же имеющихся наблюдаемых параметров звезд и основанных на них модельных расчетов [11] позволяет утверждать только, что ни одно из соотношений (3), (6) не коррелирует с модельными данными. Рис. 1, построенный по данным табл. 1, иллюстрирует сказанное: для 13 G, K-карликов, модельные значения M из [11] никак не коррелируют со значениями, рассчитанными по (3) и (6). Точнее говоря, при использовании стандартных статистических тестов наблюдается слабая корреляция значений

М из [11], с одинаковыми уровнями значимости, как с (3), так и с (6), которая усиливается, если игнорировать в выборке звезд (двух) членов системы 70 Oph с аномально высокими значениями *М*. Впрочем, выше уже отмечалось, что модельные значения *М* не могут считаться опорными, и, что о точности их значений можно будет судить после появления прямых наблюдательных данных.

Таблица 1 ПАРАМЕТРЫ НЕКОТОРЫХ ХОЛОДНЫХ КАРЛИКОВ, МОДЕЛЬНЫЕ ЗНАЧЕНИЯ M и R_A , РАССЧИТАННЫЕ СООТВЕТСТВЕННО ПО ФОРМУЛАМ (6,8) И (14,15)

Звезла	T _r	M / M _☉	R/R _®	L/L _@	Р _{гег} (п)	M/M _☉ [11]	М/М _⊙ ф. (6) ф. (8)	R _A / R _A Ф. (14) ф. (15)
Солнце	5770	1	-1	1	25.3	I	1	1
α Cen A G2V	5886	1.105	1.224	1.622	29	1.58 A + B	0.964 1.14	0.976 0.873
α Cen B K0V	5473	0.934	0.863	0.603	36.2	1.58 A + B	0.653 0.364	0.752 1.11
70 Oph A K0V	5300	0.89	0.86	0.53	19.7	79.4 A + B	1.14 1.22	1.09 1.05
70 Oph B K5V	4390	0.73	0.67	0.15	34	79.4 A + B	0.543 0.249	0.666 1.12
ε Eri K4.5V	5094	0.83	0.754	0.345	11.7	24.0	1.79 2.66	1.48
61 Cyg A K5V	4425	0.69	0.665	0.153	35.4	0.398	0.493 0.226	0.624 1.05
ε Ind K5V	4635	0.70	0.745	0.231	22	0.398	0.805 0.734	0.865 0.920
36 OphA K5V	5135	0.602	0.69	0.299	20.3	12.0 A + B	0.750 0.740	0.826 0.834
36 OphB K5V	5103	0.486	0.59	0.213	22.9	12.0 A + B	0.537 0.425	0.661 0.772
ξ Boo A G8 V	5551	0.86	0.801	0.550	6.2	3.98 A + B	3.51 10.7	2.31 1.10
ξ Boo B K4 V	4350	0.70	0.550	0.0977	11.5	3.98 A + B	1.54 1.46	1.33 1.38
61 Vir G5V	5560	0.946	0.972	0.804	29	0.240	0.825 0.719	0.880 0.964

Кстати, если наблюдательные данные по скоростям вращений более точные, чем периоды вращений для конкретных звезд, то (6) можно записать и в другом виде, также верном с точностью по порядку величины.

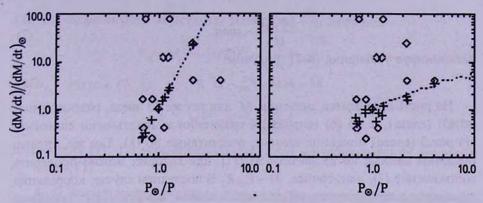


Рис.1. Скорости потеры массы 13 холодных карликов, в зависимости от периода вращения, рассчитаные по (3) - слева, и по (6) - справа. Крестиками отмечены результаты расчетов, ромбиками - данные [11]. Все единицы отнесены к солнечным.

если использовать следующее, давно уже известное эмпирическое соотношение для вращающихся небесных объектов, и, что интересно, приблизительно верное в диапазоне размеров от планет до звезд и спиральных галактик [13,14]:

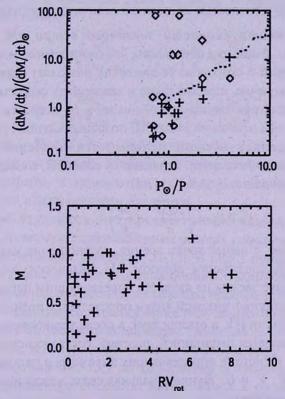


Рис.2. Скорости потерь массы 13 холодных карликов, в зависимости от периода вращения, рассчитаные по (8) - сверху. Крестиками отмечены результаты расчетов, ромбиками - данные [11]. Снизу показаны данные, иллюстрирующие соотношение (7).

$$\frac{MV_{rot}R}{M^2} \sim \text{const}. \tag{7}$$

Комбинируя уравнения (4-7), получим:

$$\dot{M} \sim M \Omega \sim V_{\rm rad}^2 \sim \Omega^2 R^2 \,. \tag{8}$$

На рис.1 приводятся значения \dot{M} для тех же 13 звезд, рассчитанные по (3) (слева), и по (6) (справа), в сравнении с модельными данными. На рис.2 (слева) показаны данные, рассчитаные по (8). Там же, справа, показаны данные по 29 звездам из [11], для которых можно проверить соотношение (7), или, точнее, $\dot{M} \sim V_{rot} R$. В последнем случае, корреляция несомненно присутствует, но не очень сильная: коэффициент линейной корреляции Пирсона порядка 0.5.

Таким образом, из вышеизложенного следуют 2 утверждения. Вопервых, скорость потери массы звезды ГП действительно пропорциональна некоторой степени скорости вращения, $\alpha \approx 1-4$, причем вопрос о точности такого приближения остается открытым до получения прямых наблюдательных данных \dot{M} . Не исключено, что значение α также зависит от возраста. Вовторых, можно надеяться, что соотношения (6) и (8) позволяют оценить размеры астросфер с точностью до порядка величины (см. ниже, разд. 4).

3. О зависимости скоростии звездного ветра от скорости вращения звезды. Выше уже отмечалось, что соотношение между темпом потери массы звездой и скоростью ее вращения позволяет оценить размер астросферы, если, конечно, известна также и зависимость скорости истечения от основных параметров звезды, в том числе, и от скорости вращения. Данные по скоростям истечений звезд ГП, подобных Солнцу, отсутствуют, поэтому при оценках обычно используется значение скорости установившегося солнечного ветра, меняющейся вдоль ГП, согласно формуле параболической скорости V [4,8,10,11,15]:

$$V_{w} \cong V_{\rho} = \sqrt{\frac{2GM}{R}} \sim \left(\frac{M}{R}\right)^{1/2}.$$
 (9)

Более обоснованное, с нашей точки зрения, соотношение между V, M и R можно получить следующим образом. Из физических соображений очевидно, что радиус звезды не является определяющим параметром для V, так как расположение звуковой точки определяется преимущественно магнитными явлениями [11, и ссылки там], а после установления, скорость ветра, очевидно, задается гравитацией, поэтому, согласно использованной выше π -теореме, в системе определяющих параметров установившегося звездного ветра M, V, и G, функциональная связь между ними задается следующим соотношением:

$$V_{w} = C\sqrt[3]{G\dot{M}}, \qquad (10)$$

где С - безразмерная константа. Используя (6), получим:

$$\dot{V}_{w} \sim \dot{M}^{1/3} \sim (M \Omega)^{1/3} \sim \left(\frac{M}{R} V_{rot}\right)^{1/3},$$
 (11)

либо, с учетом (7, 8):

$$V_w \sim \dot{M}^{1/3} \sim V_{rot}^{2/3} \sim \left(\frac{M}{R}\right)^{2/3}$$
 (12)

Выражения (11, 12) можно использовать для масштабирования значения V_{ω} вдоль $\Gamma\Pi$.

4. О зависимости радиуса астросферы от скорости вращения звезды. Выше уже отмечалось, что радиус астросферы R_{λ} можно оценить, приравняв динамическое давление сверхзвукового звездного ветра P_{λ} суммарному давлению окружающей межзвездной среды P_{λ} :

$$P_{w} = \rho_{w} V_{w}^{2} = \frac{\dot{M}}{4\pi R_{w}^{2} V_{w}} V_{w}^{2} = P_{ISM}.$$
 (13)

Здесь подразумевается сферически-симметричный характер истечения и постоянство V_{ω} в астросфере. Таким образом, с учетом (6-8) и (11,12), имеем соответственно:

$$R_{A} = \sqrt{\frac{MV_{w}}{4\pi P_{ISM}}} \sim \frac{1}{\sqrt{P_{ISM}}} \left(\frac{M}{R} V_{rol}\right)^{2/3}, \tag{14}$$

$$R_A = \sqrt{\frac{\dot{M}V_w}{4\pi P_{ISM}}} \sim \frac{V_{rol}^{4/3}}{\sqrt{P_{ISM}}} \sim \frac{1}{\sqrt{P_{ISM}}} \left(\frac{M}{R}\right)^{4/3}$$
 (15)

Соотношения (6,8), (11,12) и (14,15) соответственно позволяют оценить темп потери массы звездой, скорость установившегося звездного ветра, и радиус астросферы, в зависимости от основных звездных параметров, массы, радиуса и/или скорости вращения.

Выше уже отмечалось, что прямые наблюдательные данные по *М* отсутствуют, поэтому в опубликованных работах используются результаты модельных расчетов [см. например, 11,15]. В табл.1 приводятся заимствованные из [11] данные некоторых ближайших к Солнцу звезд-карликов G, К-классов, для которых известны как периоды вращения, так и (модельные) значения *М*. Как пример использования полученных в работе формул, по известным массам, радиусам и периодам вращения рассчитаны скорости вращения звезд, и далее, темпы потери масс (формулы 6, 8) и радиусы астросфер (формулы 14, 15), по отношению к солнечным значениям. Результаты приведены в последних двух столбцах и на рис.1-3. Давление межзвездной среды, окружающей эти звезды, принято равным давлению в окрестности Солнца. Результаты расчетов радиусов астросфер для 29

звезд с данными из [11] представлены на рис.3, в виде кривых (14, 15). Как следует из табл.1, разница в модельных значениях \dot{M} из [11] и рассчитанных по (6,8) в половине случаев существенная, на 1-2 порядка величины. Как правило, это компаньоны в двойных системах. Отметим,

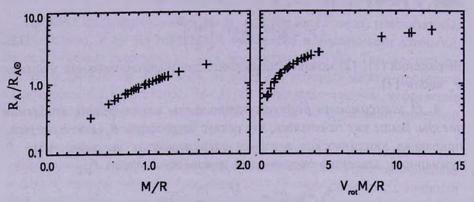


Рис.3. Радиусы астросфер ближайших к Солнцу 29 холодных звезд-карликов, рассчитаные по данным [11]. Результаты расчетов по (14) приводятся слева, по (15) - справа.

что сравнение этих результатов особого смысла не имеет: как уже отмечалось, необходимы прямые наблюдательные данные параметров астросфер, чтобы судить об адекватности как теоретических модельных результатов, так и значений, рассчитанных в данной работе.

Заключение. В настоящей статье показано, что характеристики астросфер звезд-карликов поздних классов, радиусы, темпы потерь массы звездой и установившиеся скорости истечения, связаны со скоростями вращений звезд простыми аналитическими соотоношениями, точными по порядку величины (формулы 1, 6, 8, 11, 12 и 14, 15). Вывод основан на известном факте, что магнитная активность, вращение и потеря массы конвективных звезд ГП взаимно связаны, позволяющем использовать размерностные соотношения между указанными определяющими параметрами и массой, и радиусом звезды. При этом использован также известный эмпирический факт о постоянстве отношения удельного момента вращения звезды к ее массе, вдоль ГП, также точное по порядку величины. Полученные простые формулы позволяют рассчитать характеристики астросфер звезд нижней части ГП по отношению к гелиосферным значениям. В качестве примера использования полученных в работе соотношений, на основе известных параметров ближайших холодных звезд ГП рассчитаны их темпы потери массы для 13 звезд и радиусы астросфер для 29 звезд.

Часть этой работы выполнена во время визита в Институт Аргеландера при Университете Бонна, при финансовой поддержке фонда Александра фон Гумбольдта, Германия. Работа выполнена также при частичной поддержке

гранта Армянского Национального Научного и Образовательного Фонда (ANSEF), Нью Йорк, США. Автор благодарен Г.Фару (Hans Fahr) и А.Акопяну за ценные замечания. Автор благодарен рецензенту за полезные замечания.

Бюраканская астрофизическая обсерватория им. В.А.Амбарцумяна, Армения, e-mail: ayarayeg@gmail.com

ON ASTROSPHERES RADII

A.G.YEGHIKYAN

It is shown that characteristics of astrospheres of convective dwarf-stars such as radii, mass loss rates and velocities of steady-state stellar winds are connected by simple analytical relations resulting from the dimensional approach with basic parameters of stars - with their masses, radii and rotation velocities. As an example, mass loss rates of 12 cool dwarf-stars, nearest to the Sun, are calculated and 29 astrospheres radii.

Key words: astrospheres;stellar winds:stars rotation

ЛИТЕРАТУРА

- 1. P.Frisch, Astrophys. J., 407, 198, 1993.
- 2. В.Б.Баранов, К.В.Краснобаев, Гидродинамическая теория космической плазмы, М., Наука, 1977.
- 3. P.Frisch, S.Redfield, J.Slavin, Ann. Rev. Astron. Astrophys., 49, 237, 2011.
- 4. B.E. Wood, Living Rev. Solar Phys., 1, 2, 2004.
- 5. W.J.Borucki, D.G.Koch, N.Batalha et al., Astrophys. J., 745, 120, 2012.
- 6. J. Talbot, Jr., M.J. Newman, Astrophys. J. Suppl. Ser., 34, 295, 1977.
- 7. А. Егикян, Астрофизика, представлено к публикации, 2012.
- 8. M. Guedel, in: (eds. A. Kosovichev et al.), Proc. IAU Symp. 264, 375, 2010.
- 9. T.R.Ayres, J. Geophys. Res., 102, E1, 1641, 1997.
- 10. B.E. Wood, S. Redfield et al., in: (eds. G. Favata et al.) ESA SP-560, 309, 2005.
- 11. S.R. Cranmer, S.H. Saar, Astrophys. J., 741, 54, 2011.
- 12. P. Bridgeman, Dimensional analysis, Yale UP, New Haven, 1932.
- 13. P. Brosche, Astr. Nach., 286, 241, 1962.
- 14. P. Brosche, Z. Astrophys., 57, 143, 1963.
- 15. J.-M. Griessmeier, M. Khodachenko, H. Lammer et al., in: (eds. A.G. Kosovichev et al.), Proc. IAU Symp., No. 264, 385, 2010.