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We derive the hydrodynamical equations of r-mode oscillations in neutron stars in 
presence of a novel damping mechanism related to particle number changing processes. The 
change in the number densities of the various species leads to new dissipative terms in the 
equations which are responsible of the rocket effect, 'tie employ a two-fluid model, with one 
fluid consisting of the charged components, while the second fluid consists of superfluid 
neutrons. We consider two different kind of r-mode oscillations, one associated with comoving 
displacements, and the second one associated with countermoving, out of phase, displacements.
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1. Introduction. Rapidly rotating neutron stars have been the subject of 
intensive investigation in the last years. Of particular interest are neutron star 
oscillations, which might՜ be useful to shed light on the internal structure of 
these stars [1,2]. Stars have various modes of oscillations, among them /--mode 
oscillations are probably the most interesting ones, because they provide a severe 
limitation on the star's rotation frequency through coupling to gravitational 
radiation emission [3,4]. The oscillations of compact stars can be damped by 
various dissipative process [5,6], which take place in the interior of the star. 
However, if dissipative phenomena are not strong enough, the r-mode oscillations 
will grow exponentially fast in time until the star slows down, by emission 
of gravitational waves, to a rotation frequency where some dissipative mechanism 
efficiently damps these oscillations. Since neutron stars are observed to rotate 
at very high frequencies, any model of neutron star must provide an efficient 
mechanism of dissipation of r-mode oscillations. In this way, the study of 
r-mode damping is useful in constraining the stellar structure and can be used 
to rule out some exotic phases of matter [7.9].

Standard neutron stars are stellar objects with a mass of about 1.4 and 
a radius of about 10 km. They are believed to have a crust of about 1 km, with 
an outer part made of a lattice of ions embedded in a liquid of electrons and 
an inner part made of nuclei embedded in a liquid of 'S0 sijperfluid neutrons. 
In the interior of the star nuclei are melted and both neutrons and protons



102 G.COLUCCI ET AL.

are expected to condense into BCS-like superfluids. However, neutron interaction 
in the ‘So state at supemuclear matter density is repulsive, but it is still possible 
to form Cooper pairs in the 3P2 channel [10]. The proton density is much 
smaller than the neutron density and therefore the formation of pp Cooper pairs 
in the isotropic 'S0 channel is allowed. Pairing between protons and neutrons 
does not take place because of the large mismatch between their Fermi energies. 
In the core of neutron stars muons might be present (when or
deconfmed quarks in a color superconducting phase, moreover pion or kaon 
condensates might be realized. In the present paper we shall not consider any 
of these possibilities and assume the core of the neutron star comprises only 
neutrons, protons and electrons.

/•-mode oscillations have been studied extensively in the literature [1], and 
it is known that shear and bulk viscosities are able to suppress the instability 
in two different ranges of temperatures [5,6]. For temperatures smaller than 
about 10s K the fluid damping due to shear viscosity suffices to suppress the 
r-mode instability, but with increasing temperature the effect of shear viscosity 
is gradually suppressed. On the other hand, for temperatures larger than about 
IO10 - 10" K, bulk viscosity becomes an efficient mechanism for damping 
r-mode oscillations. Bulk viscosity does not lead to sufficient damping at lower 
temperatures because neutron matter is likely to be in the superfluid phase 
where bulk viscosity is suppressed by Pauli blocking. However, at temperatures 
above 10'°-10" K nuclear matter is believed to be in the normal phase with 
a large bulk viscosity coefficient. Therefore, one has an "instability window" 
for standard neutron stars corresponding to a range of temperature approximately 
given by 106-10'°K. The exact values depend on the details of the model 
considered and on the rotation frequency of the star. The instability window 
is in part reduced by the "surface rubbing" between the core and the crust of 
the star [11,12]. This mechanism results in a viscous boundary layer between 
the core and the crust of the star which damps /-֊mode oscillations for 
temperatures less than about 1010 K and for sufficiently small frequencies.

In [13-16] it is studied the effect of mutual friction in reducing the 
instability window. It is shown that the typical timescale of mutual friction is 
of the order of 104s and is therefore too long for damping the /--mode 
instability. Indeed, the timescale associated with gravitational-wave emission is 
of the order of few seconds (for a millisecond pulsar). However, mutual friction 
can reduce the instability for certain values of the entrainment parameter [13] 
or for large values of the drag parameter [16].

In the present paper we determine the hydrodynamical equations for r- 
mode oscillations in presence of a novel dissipative mechanism associated with 
the change in the number of protons, neutrons and electrons which we shall 
refer to as the rocket effect. In real neutron stare this mechanism can take 
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place in the outer core and in the inner crust of the star and is related to 
beta decays and interactions between the neutron fluid and the crust. The rocket 
effect is dissipative because when two or more fluids move with different 
velocities a change of one component into the other results in a momentum 
transfer between the fluids. This change in momentum is not reversible, because 
it is always the faster moving fluid that will lose momentum. The resulting 
dissipative force is proportional to the mass rate change and to the relative 
velocity between the fluids. The name "rocket effect" reminds that the same 
phenomenon takes place in the dynamical evolution of a rocket whose mass 
is changing in time as it consumes its fuel.

In order to simplify the analysis we consider a simplified model of neutron 
star consisting of a fluid of neutrons, protons and electrons and no crust. 
Protons and electrons are locked together by the electromagnetic interaction 
and therefore we consider that the system consists of two fluids. As a further 
simplification we assume that the star has a uniform mass distribution with 
density p = 2.5p0 and a radius of 10 km. Since this simplified model of star 
does not comprise a crust we consider only number changing processes 
associated with weak interactions.

In our analysis we consider two different r-mode oscillations. One is 
associated predominantly with toroidal comoving displacements and the second 
one is dominated by toroidal countermoving displacements. We shall refer to 
these oscillations as "standard /-֊mode" and as "superfluid r-mode", respectively. 
These two modes decouple for a star made by uniform and incompressible 
matter, and we shall restrict to treat such a case. By performing an expansion 
in the parameter C1/QK , where Q is the frequency of the star and £lK is 
its Kepler frequency, we find that the linearized equations for both the standard 
and superfluid /--modes present additional dissipative terms due to the rocket 
effect, but for each oscillation they appear in a different order in our expansion 
parameter. The numerical evaluation of the timescale related to this mechanism 
is performed in the accompanying paper [17].

This paper is organized as follows. In Section II we review the hydrodynamic 
equations in the two fluid approximation. In the hydrodynamical equations we 
neglect shear and bulk viscosities but consider the mutual friction force and 
the rocket effect. In Section III we present the differential equations governing 
the deviations from equilibrium of a rotating two fluid system. We study the 
linearized problem, neglecting deformations of the star due to rotation and 
assuming uniform mass density. Although not very realistic, these assumptions 
allow us to simplify the study of the r-modes, obtaining an analytical expression 
for the fluid displacements. We draw our preliminary conclusions in Section 
IV. In Appendix A we report some details about the evolution equations for 
the comoving and countermoving displacements.
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2. Hydrodynamical equations for the multifluid neutron star 
model. The equations describing the dissipative processes of neutrons, protons 
and electrons in the outer core of a standard neutron star have been studied 
in detail in [15]. In general, the entropy production rate depends on 19 
independent coefficients which are related to the various dissipative processes. 
However, for low temperatures, well below the critical temperature for superfluidity, 
and neglecting viscosities one obtains the expression given in [18] which 
depends only on two different coefficients. One is related to mutual friction 
and the second one with the so-called rocket term. Here we review the basic 
hydrodynamical equations in presence of these two different dissipative 
mechanisms, neglecting the presence of shear and bulk viscosities.

For a system consisting of neutrons, protons and electrons, the mass 
conservation law is given by, see e.g. [15,18,19],

9/PJ+V/(pX)=rx> U)

where rx is the particle mass creation rate per unit volume and the index 
x=n, p, e refer to the particle species, that is, neutrons, protons and electrons. 
In these equations we have considered that some process can convert neutrons 
in protons and electrons and vice versa. Therefore, we are assuming that the 
various components are not separately conserved. One possible mechanism 
leading to a change in the particle number densities is given by the weak 
processes

n->p+e~+ve, p+e՜ ->n+v։. (2)

These reactions lead to a change in the chemical potentials of the various 
species and therefore are associated with number density changes.

A different process can lead to a non-vanishing mass creation rate, which 
we shall call crust-core transfusion. In this process when a compression takes 
place, the ionic constituent of the crust are squeezed and part of their nucleonic 
content is released and augments the fluid components. The opposite mechanism, 
related to a reduction of the pressure leads to the nucleonic capture by the 
ions of the crust. In the present section we consider that a generic mechanism 
is at work to produce a change in the number densities. In the accompanying 
paper [17] we shall evaluate the particle mass creation rate corresponding to 
the beta decay processes. Regarding the crust-core transfusion processes the 
corresponding creation rates are difficult to evaluate and we postpone their 
calculations to future work.

In any case, the three particle creation rates are not independent quantities, 
because charge conservation implies that Velme=Vplmp , whereas baryon 
number conservation leads to ^p/mp = -T'nlmn , meaning that only one creation 
rate is independent.

It is possible to simplify the treatment of the system considering that our 
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analysis regards processes that happen at a time scale much larger than the 
electromagnetic time scale. Therefore, we can consider that electrons and 
protons are locked together to move with the same velocity [20], (see however 
[21]). Moreover, charge neutrality implies that the number densities of electrons 
and protons are equal, i.e. n,=nf, meaning that electrons and protons can be 
treated as a single charge-neutral fluid and henceforth we shall refer to this 
fluid as the "charged" component, employing the subscript c to label it. As 
a matter of fact, the system can be viewed as consisting of two fluids, with 
mass densities p„ = m„n„ and pe=m„nc, where mn = mf + mt and nt=nf = ne. 
For non vanishing mass creation rates, the Euler equations have an extra term, 
see [18] and are given by

/ \Z \ '
=֊!—, (3)

Pn

(a, -ec wj+ V/frc +®)-ec V/tf =-֊֊—+(l-e„ -ec)—w,, (4)
Pc Pc

where /, / label the space components, we have defined a chemical potential 
by mass px=px/m„ and w=vc-v„ represents the relative velocity between 
the two fluids. The quantities and ec are the entrainment parameters, that 
are related to the fact that momenta and velocities of quasiparticles may not 
be aligned [22], and the the gravitational potential, O, obeys the Poisson 
equation

V2<b = 4nG(p„ +pc). (5)

The force term fjMF entering into both Euler equations corresponds to the 
mutual friction force between the superfluid and normal component. This force 
appears when a suerfluid is put in rotation [23-25] and at the microscopic level 
it is due to the scattering of the normal component off the superfluid vortices 
[20]. In the present case it is due to the scattering of electrons off the nebtron 
superfluid vortices. Indeed, as a consequence of the entrainment between 
neutrons and protons the superfluid vortices are accompanied by a magnetic 
field. The expression of the mutual friction force valid for small values of w 
has been determined in [23] and is given by

ft* = 2p„ w* + 2p„ wm , (6)

where the coefficients B, B' can be written as

B = -֊ and B' = -^-i 
l+3(,2 1+V

(7)

where is the dimensionless "drag" parameter [15]. The actual strength of 
the drag is not precisely known, see e.g. [19,20,26] and one can consider three 
different regimes: the weak drag regime, 5C«1, the strong drag regime »1 
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and the intermediate drag regime, <£~1. For small values of the drag 
parameter one can express the coefficients B, B' as a function of the 
entrainment parameter. Considering scattering of electrons off vortices, according 
with [20], one has that

2 / \>/6f a 1/6
fl = 4x IO՜4—?===■ I ——I —rrA—5՜ and B'-B2. (0)

7^10.05 J (jO’4g/cm3J W

The last term on the right hand side of Eq. (4) is the so-called rocket 
term. This force is due to the fact that when two fluids move with different 
velocities a change of one component into the other results in a variation of 
the momentum of each fluid component. This change in momentum can be 
viewed as a force proportional to the mass rate change, T„ and to the relative 
velocity between the two fluids, w. Actually, in Eqs. (3,4), one can see that 
the rocket term acts only on the charged component. The reason is that in 
the presence of the rocket term, the mutual friction is not uniquely determined 
because part of the rocket term contribution can be included in the definition 
of the mutual friction force. In the present analysis we have employed the same 
definition given in [18]. One can show, see [18] for more details, that the 
mutual friction force is given by the expression in Eq. (6).

In summary, in the presence of the rocket effect one has to consider a 
nonvanishing mass creation rate in Eq. (1) and the rocket term force in Eq. (4). 
As we shall show in accompanying paper [17], the rocket effect leads to energy 
dissipation, and we shall estimate the corresponding damping timescale for r- 
mode oscillations. In previous analysis of the possible dissipative mechanisms 
of star oscillations the rocket term has been neglected. Indeed, it was assumed 
that the neutron, proton and electron numbers are separately conserved quantities, 
that is Tp = re = T„ = 0.

3. Perturbed hydrodynamical equations. A non-vanishing mass 
creation rate influences the evolution of the various hydrodynamical quantities. 
Indeed, the continuity equation (1) as well as the Euler equations (4) depend 
on r„. Therefore, in the analysis of the various modes of oscillations of a 
neutron star one has to take into account effects related to this term. In the 
present paper we only discuss its effect on the evolution of the r-modes of 
a superfluid neutron star, although it would be equally interesting to study its 
effect on other pulsation modes. In the following analysis of the hydrodynamical 
equations we also include the mutual friction force and we follow very closely 
the recent analysis of the r-mode oscillations developed in [27] for normal fluid 
stars and extended to superfluid stars in [16,28].

As in [16], we study the linearized hydrodynamical equations for the 
perturbations around an equilibrium configuration of a neutron star rotating 
with constant angular velocity Q and we assume that the background configuration 
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is such that the two fluids move with the same velocity, thus at equilibrium 
w = 0.

It is useful to write the Euler equations for the perturbed quantities using 
as degrees of freedom (dof) the center of mass displacement and the relative 
displacements between the neutron fluid and the charged fluid. We define the 
comoving velocity as

8v = —8v +—8vc, • rax
P P v ’

and the countermoving, or relative, velocity as
5w = 8v c-8v (10)

The continuity equation for the comoving degree of freedom is not affected 
by the rocket effect and is given by

9(8p + Vy(p8i?)= 0, (11)

on the other hand the continuity equation for the countermoving dof depends 
on it. We shall assume that the mass creation rate is given by

rfl=r„+8r„, (12)

where r„ is a steady mass creation rate and 8Tn is a small fluctuation on 
the top of it. Then, employing as a second continuity equation the one for 
the charged fraction, xc=pclp, we have that

df8xc =~V-[xc(l-xc)p8w]-8vVxc-^L. (13)

The linearized Euler equations for both the comoving and countermoving 
velocities are given

3z8u, +2e,,*Q-/8u* +—V,8p--^yV, p+Vz8<J> = (l-e)—8wz, (14)
P p P

d,(1 -e)8w,+V,(8P)+2B'eIJkQjdwk-2B = (1 -e)-^8 w,, (15)
Pc

where here we have defined e = ec +e„ =En(l + pn/pc)=en/xc and where

8p = 8pe-8JIn (16)

and B = B/xc, B' = 1 - B'/xe. The hydrodynamical equations can be studied 
employing a perturbative expansion of the various hydrodynamical variables in 
Q, the star rotation frequency. Actually, the expansion is in the parameter 

, where is the Kepler frequency of the star. For superfluid systems, 
this expansion is particularly convenient, as one can show that the complicated 
system of equations for the comoving and countermoving degrees of freedom 
decouple as these variables depend on different powers of Q.

In the study of the evolution equations we shall restrict to the case where 
r„ = 0 and therefore the rocket terms in Eqs. (14) and (15) will be neglected.



108 G.COLUCCI ET AL.

The only contribution to dissipation will arise from the mass creation rate in 
Eq. (13), and we shall evaluate the corresponding damping timescale employing 
the energy integral approximation, see e.g. [16].

For our study we consider some simplifying, admittedly unrealistic, assump
tions. We neglect the deformation of the star due to rotation, which affects the 
hydrodynamical variables at order Q2. We use the Cowling approximation, that 
is, we neglect perturbations of the gravitational potential associated with the 
oscillations of the star. As a further simplification, we also consider a model 
where the mass density of the star is uniform. As emphasized in the Introduction, 
our goal is to study the impact of the rocket effect in the evolution of the r- 
modes, and we leave for future studies a more realistic model of the star.

Oscillations of a fluid element of a stars can be described by the Lagrangian 
displacement vector Ç, which can be decomposed into a sum of toroidal and 
spheroidal components. Since neutron stars can be described employing the two 
fluid model, one defines comoving and countermoving displacements, respec
tively Ç+ and by means of the equations

5v = a^+ocQ^+, 8w = a^_oc£^_. (17)

These two displacements describe the center of mass oscillation and the out 
of phase oscillation of the two fluids, respectively. We then expand these 
quantities in terms of toroidal and spheroidal components

f K \ f 7 \

f If 'X f 7 \

where Yln are the spherical harmonics. The fluctuations of the pressure and 
of the chemical potential difference .can be written respectively as

$ P ~ P 8r Z*՜*, Ç/m Ym , (20)

S₽ = ^ET/mr/m, (21^

where g = Qor (with Q%=Gm/r3) fixes the scale of pressure and chemical 
potential fluctuations. Notice that with these definitions, t/m and ç/m are 
dimensionless.

Since in a superfluid star one has two different kind of displacements, in 
principle one can have two different kind of r-mode oscillations, one associated 
with the comoving dof and one associated with the countermoving dof. Actually, 
the hydrodynamical variables defined above obey a complicated set of coupled 
differential equations, see [16], with couplings between comoving and coun
termoving displacements. However, as shown in [16], at the leading order in 
Q, one finds that the equation for the comoving displacement decouples and 
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one can determine an analytic expression for the standard r-mode oscillation. 
Regarding the mode associated with the countermoving dof, it turns out to be 
a general inertial mode. That is, it is not a mode dominated by the toroidal 
components. However, for incompressible stars with uniform density one has 
that this inertial mode turns into an r-mode. We shall restrict to էհե case 
and analyze this r-mode oscillation in Sec. 3.2. We explicitly consider the 
effect of the mutual friction in the equations of motion, the reason is that in 
this way we can analyze the regime where the mutual friction coefficients, B 
and S', are large. Therefore our results will explicitly depend on the values 
of these parameters.

3.1. Standard r-mode oscillations. For the standard r-mode oscil
lations one assumes that the comoving toroidal displacement, Klni, is of order 
unity, while the spheroidal comoving displacements are of order Զ2. All the 
countermoving displacements turn out to be of order Զ2 as well. Since the 
standard r-mode oscillation is dominated by Kliu, it is very similar to the 
r-mode oscillation in normal fluids [1], and can be easily determined after 
imposing proper boundary conditions [16]. To first order in the rotation 
frequency of the star, one has that the typical frequency of the oscillations 
(measured in the corotating frame) is

2mQ
(22)

In our analysis we restrict to analyze the case l=m = 2, which corresponds 
to the most unstable r-mode.

Regarding the pressure perturbations, they are of order Q2, whereas 
Sp«Q4 [13,16]. The order in Q of the toroidal oscillations and of the pressure 
and chemical potential fluctuations are reported in the first line of Table 1.

For the purpose of estimating the damping time scales associated to both 
mutual friction and the rocket effect, carried out in the accompanying paper 
[17], we have to determine the solutions for the countermoving dof. The 
equations governing the evolution of the various dynamical variables are

Table 1

ORDER IN Q OF THE COMOVING AND CONTERMOVING 
DISPLACEMENTS, OF THE PRESSURE FLUCTUATION AND OF 

THE CHEMICAL POTENTIAL FLUCTUATION FOR THE 
STANDARD r-MODE OSCILLATION AND FOR THE SUPERFLUID 

r-MODE OSCILLATION

type of r-mode Հ, xlm ■Ն Հ.> ն
standard r-mode Օ(Զ°) Օ(Զ2) Օ(Զ2) Օ(Զ4) Օ(Զ2)

superfluid r-mode Օ(Զ2) Օ(Ո°) Օ(Զ4) Օ(Ո2) օ(ո2)
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reported in the Appendix A. Assuming constant mass density and hydrostatic 
equilibrium we find that xM obeys the following differential equation

rM
r2֊T*+i =(^i + 51-l)rt/+| + (A2B2-AiBi')xt+] -A2B4 ^2_ri ՝ (23)

where the prime indicates differentiation with respect to r and the coefficients 
zf, 13 are reported in Appendix A. As shown there, the last term on the right 
hand side of this equation arises because we have assumed that matter is in 
hydrostatic equilibrium. The differential equation has solution given by

t/+I0 = /0+CIrn'+C2rn’, (24)

where ftr) is the particular solution of the differential equation and where C{ 
and C, are the coefficients of the homogeneous solution, to be fixed by the 
boundary conditions. The exponents of the homogeneous solution are given by

A\ + Bx ± -J(A\ + B})2 +4(a2B2-A1Bi)
"i,2=---------------------- 2--------------------- > W

and it turns out that n, is negative, meaning that in order to avoid divergences 
at r=0, it must be C, = 0. It is interesting to note that for vanishing mutual 
friction one has that nt = l-1 and n, = -(/+4). As a second boundary condition 
we assume that the chemical potential difference vanishes at the surface of the 
star, that is §₽(/?) = 0.

For completeness we report the equation obeyed by the radial component 
of the countermoving spheroidal displacement, which is given by

=r2x'M A,rx/+l
' A2^2 (26)

3.2. Superfluid r-mode oscillations. Assuming that ktm is of order 
unity one finds that the spheroidal countermoving displacements are of order 
Q2. The driving force on the countermoving displacement is the chemical 
potential difference which turns out to be of order Q2. The order of the 
toroidal comoving displacement depends on the compressibility of the fluid. For 
a compressible fluid it is of order Q°, while for an incompressible fluid it 
is of order Q2. The reason can be traced back to the fact that comoving 
oscillations are driven by pressure oscillations and it turns out that X/m « Q-2Ç. 
For compressible fluids the pressure oscillations are proportional to chemical 
potential oscillations and therefore Ç « Q2 and thus Klni must be of order unity. 
Moreover, for this kind of mode, comoving spheroidal displacements turn out 
to be of the same order in Q of comoving toroidal displacements, meaning 
that for a compressible fluid this oscillation is a generic inertial mode and not 
an r-mode. Since for a compressible fluid various components of the displace
ments are of the same order in Q, one has to solve a system of coupled 
differential equations.
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The situation is much easily tractable for incompressible fluids. In this case 
one can assume that spheroidal oscillations are of order O(Q2) and then 
toroidal oscillations turn out to be of the same order. The order in Q of the 
various displacements and of the pressure and chemical potential fluctuations 
for incompressible matter are reported in Table 1. We shall restrict the analysis 
to the case of incompressible fluids, where the comoving and countermoving 
dof decouple, with the superfluid r-mode oscillation dominated by the toroidal 
displacement klK. To first order in the rotation frequency of the star and to 
first order in the entrainment parameter, the typical frequency of the superfluid 
r-mode oscillation (measured in the corotating frame) is

As for the standard r-mode, we restrict to analyze the case l=m = 2, which 
corresponds to the most unstable r-mode. Moreover we consider only small 
values of the entrainment.

The analysis of the superfluid r-mode oscillation is very similar to the one 
we have performed for the standard r-mode oscillations, with the roles of Klm 
and of the pressure oscillations interchanged with klm and the chemical potential 
oscillations. We find that for superfluid r-modes, klm obeys the same equation 
that Klm obeys for standard r-modes, and the chemical potential fluctuation 
obeys the same equation that pressure fluctuation obey for standard r-modes. 
Regarding the pressure oscillation, C,lm , one has to solve an equation analogous 
to Eq. (23), but without the last term on the right hand side, because we are 
now considering an incompressible fluid. We find that

Ç/+1=C։r''+C2rx’, (28)

where s,, depend on the parameters of the model. One of the two coefficients 
is always negative, and therefore in order to avoid the divergence at the origin, 
we have that

Ç+I=Cr\ (29)

We fix C by demanding that the comoving toroidal displacement, Klm, is 
properly normalized, as in [14].

4. Conclusion. Superfluid neutron stars are characterized by various 
oscillation modes. Of particular interest are r-mode oscillations, because in the 
absence of efficient dissipative mechanisms they lead to a rapid spin-down of 
the compact star. The reason is that r-mode oscillations couple to gravitational 
waves, and the emission of gravitational waves (which spins down the star) 
makes these oscillations larger. This unstable mechanism can however be 
damped by dissipative forces, which tend to reduce the amplitude of r-mode 
oscillations. Indeed, if the characteristic timescale of the dissipative force is
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comparable with the timescale associated to the gravitational wave emission, the 
r-mode oscillation becomes stable, meaning that the compact star does not 
quickly spin-down by gravitational wave emission.

We have derived the perturbed hydrodynamical equations for two different 
r-mode oscillations in presence of the rocket effect, that is, in the presence of 
processes that change the number of protons, neutrons and electrons. The two 
different r-mode oscillations considered are the "standard r-mode oscillation", 
which is a predominantly toroidal comoving displacement of the two superfluid 
and normal components, and the "superfluid r-mode oscillation", which is 
associated to toroidal countermoving displacements of the two fluids. In realistic 
neutron stars these two modes are coupled, however, in the limit of small rotation 
frequency and assuming that the star has a uniform mass density and is 
incompressible, they decouple. For both kind of oscillations we have determined 
the linearized Euler equations and found that for both the standard r-mode 
oscillation and the superfluid r-mode oscillation the rocket effect leads to the 
appearance of additional dissipative terms in the perturbed hydrodynamical 
equations. These terms might give a relevant contribution to the energy dissi
pation of the oscillations, with a damping timescale comparable to the one 
associated to gravitational wave emission. The numerical evaluation of the 
corresponding damping timescale and the comparison with those deriving from 
other dissipative mechanisms is performed in the accompanying paper [17].

APPENDIX A: Evolution equations
1. Standard r-mode. We derive the evolution equations for the standard 

r-modes, assuming uniform mass density of the star. For a star with uniform 
mass density one can impose hydrostatic equilibrium obtaining

^)=Gyfr2-^)p2> (Al)

where we have assumed that the pressure vanishes at the surface of the star. Here 
R = 10 km is the radius of the star and we shall consider a mass density 
p = 2.5p0, where p0 is the saturation density of nuclear matter. With these values 
we obtain that the mass of the star is where is the mass of
the sun. In this case we have that the pressure and the various components of 
the countermoving mode obey the following set of equations [16]

ki„=asM+bzM (A2)

T/+i = +dzM+esM (A3)

r = ~2xM ~ film -gzM+hsM (A4)
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dsM , y 1 rr֊ = -^sM--^-CaM+pzM, (A5)

where the various coefficients have been derived in [16] and for I=m are given 
by

B-iB'

2-1 >
5 + 2/J

,.2 (
e = -—\lB'-iB 1+21

b = (l+2)a

j (fl nVi — X .tt 2 + 1 1/+8/+2/2
d =----- (Z+ 2)(1 - e )-IB-iB--------------------Z+2(/ A ' 5 + 21 J

/ = -(Z+l)c

g = -pe

p = (Z+l)(Z+2), 

where co = ct/Q0 > with

A = ûj2f(l֊ë)-2zÂ^^
k ’ 5 + 21

Qo = ^GM/p? ■ In Eq. (A5) we have that

K = and T = ^£
P c/logp (A6)

which depend on the equation of state. Since we assume hydrostatic equilibrium 
we have from Eq. (Al) that

2r2
V = -֊- and r = 2. (A7)

R-r2
Notice that we shall assume that both the background and the perturbations 
will obey the same equation of state, therefore the coefficient T determined 
above, characterizes both the background and the perturbation.

Finally, according with [16], we have that the pressure fluctuations are given 
by 

C/+i=2
com Z r1 1 

72Z+3 z+i ’ (A8)

where m = Q/Qo. Upon substituting the expressions above in the equations 
(A2), (A3), (A4) and (A5) and expressing kliti and zhi in terms of shl and t/+1 
we have two coupled differential equations for and t/+i . These equations 
can be written as a second order differential equation

rM
r2 t’+1 = (4 + B} - l)r tJ+i + (a2B2-X|B[)r/+I - ^2^4 —j y» (A9)

R-r
where
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/4, = —2—
Jb+g 
cb+d

, ad- be ac+ e 
A2 =~f L +cb+ d cb+ d

+ h,

B\=-3-p
ac+e 
cb+'d ’

R - p
2 cb+d ’

The analysis of the superfluid r-modes is analogous to the one we have 
done for the standard r-modes. However, in order to have an r-mode oscillation 
and not a generic inertial mode, one has to assume that the fluid is 
incompressible [16]. In this case r֊>oo and the differential equations one has 
to solve are simpler.

2. Superfluid r-mode. In the case of the superfluid r-mode we assume 
that the fluid is incompressible, that means r -> co. Therefore, in this case 
we are left with the following equations for the countermoving degree of 
freedom:

֊tL = (/֊1h+| (A10)

' l /+1
՛" 2i<DaQi+i(lB'+imB)XM (A11)

while for the comoving degree of freedom

r & = “3 $/♦,+aZM (Al 2)

r ■ = -2^/+i + bSM + cZ/+1+dK/n, (Al 3)

C/+1 = e^hn+Pt+\+zSm (A14)

^n=AS/+1+J2/+i> (A15)
where we derived similar coefficients as in [16] and, for l=m, are given by 

a = (/+l)(/+ 2) b = co2
c = -2/coS . </--2/toco/g/+I

d , F 23
/+1 [ (Z+l)(/+2)

2 . icon „g="777 /’=_^V'a+1
<+l (0 —co0

j = (/+2)A.

Now, by expressing K* and Zhx in terms of and £/+l we are left with 
two differential equations for the latter variables, that can also be rearranged 
as a second order differential equation for

r2S’M = (4+, (A16)
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where
eh+g 
ej+f ’

A i = -3 - a

B2‘-T
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г-МОДА ОСЦИЛЛЯЦИЙ И РЕАКТИВНЫЙ ЭФФЕКТ 
ВО ВРАЩАЮЩИХСЯ НЕЙТРОННЫХ ЗВЕЗДАХ. I.

ФОРМАЛИЗМ

Д.КОЛУЧЧИ1, М.МАННАРЕЛЛИ2, К.МАНУЕЛ3

Получены гидродинамические уравнения г-моды осцилляций в нейт
ронных звездах при наличии нового механизма затухания, связанного с 
процессами изменения числа частиц. Изменения плотности числа различных 
сортов частиц приводят к возникновению в этих уравнениях новых дисси
пативных членов, которые ответственны за реактивный эффект. Использована 
двухжидкостная модель, причем одна из жидкостей представляет собой 
заряженную компоненту звезды, а вторая жидкость состоит из сверхтекучих 
нейтронов. Рассмотрены два различных типа г-моды осцилляций, первая 
- связанная с совместным смешением, а вторая - с противоположным и 
безфазовым смешением этих жидкостей.

Ключевые слова: нейтронные звезды:осцилляция:реактивный эффект



116 G.COLUCCI ET AL.

REFERENCES

1. NAndersson, K.D.Kokkotas, International Journal of Modem Physics D, 
10, 381, 2001.

2. L.Lindblom, ArXiv Astrophysics e-prints, 2001.
3. N.Andersson, Astrophys. J., 502, 708, 1998.
4. J.L.Friedman, S.M.Morsink, Astrophys. J., 502, 714, 1998.
5. L.Lindblom, B.J.Owen, S.M.Morsink, Phys. Rev. Lett., 80, 4843, 1998.
6. N.Andersson, K.Kokkotas, B.F.Schutz, Astrophys. J., 510, 846, 1999.
7. J.Madsen, Phys. Rev. Lett., 85, 10, 2000.
8. M.Mannarelli, C.Manuel,. BA.Sa'D, Phys. Rev. Lett., 101(24), 241101, 2008.
9. N.Andersson, B.Haskell, G.L.Comer, Phys. Rev. D, 82(2), 023007, 2010.
10. M.Hoffberg, A.E.Glassgold, R. W. Richardson, M.Ruderman, Phys. Rev. Lett., 

24, 775, 1970.
11. L.Bildsten, G.Ushomirsky, Astrophys. J., 529, L33, 2000.
12. K.Glampedakis, NAndersson, Mon. Notic. Roy. Asrtron. Soc., 371, 1311, 

2006.
13. L.Lindblom, G.Mendell, Phys. Rev. D, 61(10), 104003, 2000.
14. U.Lee, S.Yoshida, Astrophys. J., 586, 403, 2003.
15. NAndersson, G.L.Comer, Classical and Quantum Gravity, 23, 5505, 2006.
16. B.Haskell, N.Andersson, A.Passamonti, Mon. Notic. Roy. Asrtron. Soc., 

397, 1464, 2009.
17. G.Colucci, M.Mannarelli, C.Manuel, Astrophysics, 56, 117, 2013.
18. R. Prix, Phys. Rev. D, 69(4), 043001, 2004.
19. D.Langlois, D.M.Sedrakian, B.Carter, Mon. Notic. Roy. Asrtron. Soc., 

297, 1189, 1998.
20. MAAlpar, SA.Langer, JA.Sauls, Astrophys. J., 282, 533, 1984.
21. G.Mendell, Astrophys. J., 380, 515, 1991.
22. A.FAndreev, E.P.Bashkin, Soviet Journal of Experimental and Theoretical 

Physics, 42, 164, 1975.
23. H.E.Hall, W.F.Vinen, Royal Society of London Proceedings Series A, 238, 

215, 1956.
24. E.B.Sonin, Reviews of Modem Physics, 59, 87, 1987.
25. N.B.Kopnin, Répons on Progress in Physics, 65, 1633, 2002.
26. M.Ruderman, T.Zhu, K.Chen, Astrophys. J., 492, 267, 1998.
27. H.Saio, Astrophys. J., 256, 717, 1982.
28. N.Andersson, K.Glampedakis, B.Haskell, Phys. Rev. D, 79(10), 103009, 2009.


