# АСТРОФИЗИКА

НОЯБРЬ, 2012

выпуск 4

# ПОГЛОЩЕНИЕ ПЫЛЬЮ NLR У AGN

## Л.САРГСЯН<sup>1,2</sup>, М.ГЕВОРКЯН<sup>2</sup>, А.В.АБРАМЯН<sup>2</sup>, Г.КОСТАНДЯН<sup>2</sup>, Г.ПАРОНЯН<sup>2</sup>, А.САМСОНЯН<sup>2</sup>, Д.САРКИСЯН<sup>2</sup>, П.СИНАМЯН<sup>2</sup> Поступила 12 марта 2012 Принята к печати 12 сентября 2012

Для оценки поглощения пыли в NLR у AGN мы сравнили потоки инфракрасной линии [NeIII] 15.55 мкм и оптической линии [OIII] 5007 Å по спектрам SDSS и IRS низкого и высокого разрешения для 59 галактик. При сравнении источников с полосой силикатов на 9.7 мкм в поглошении, эмиссии и не показывающих этой характеристики, мы обнаружили. что у объектов с полосой силикатов в поглошении ~87% эмиссии из NLR поглошены пылевым торусом окружающим AGN.

Ключевые слова: галактики:пыль:поглощение

**TOM 55** 

1. Введение. Область образования оптических эмиссионных линий в Активных Галактических Ядрах (Active Galactic Nuclei, далее AGN) разделена на области узких (Narrow Line Region, далее NLR) и широких линий (Broad Line Region, далее BLR). Линии в обеих областях возникают в облаках газа, которые ионизированы не ультрафиолетовым излучением звездного происхождения, а коротковолновым излучением вещества аккрецируемого сверхмассивным центральным объектом. BLR представляет собой наиболее близкую к центральному объекту область. Масса этой области меньше массы NLR, но она имеет большую плотность. Скорость движения газовых облаков равна 10<sup>3</sup> - 10<sup>4</sup> км с<sup>-1</sup> в BLR и ~250 - 1000 км с<sup>-1</sup> в NLR [1]. Канонический радиус NLR достигает нескольких сотен парсек.

По ширине оптических линий AGN разделяются на два основных типа, тип 1 и тип 2 [2]. Для объяснения разных типов AGN было предложено много теорий. Одна из этих теорий предлагает так называемую "Объединенную модель" [3]. Согласно этой модели, разнообразие типов AGN является результатом ориентации относительно луча зрения (т.е. результатом поглощения в зависимости от ориентации). Согласно этой модели, центральный источник окружен газопылевым тором, и в зависимости от угла луча зрения к плоскости тора мы наблюдаем разные типы AGN; т.е., если мы смотрим вдоль плоскости тора, то наблюдается AGN второго типа, где околоядерная область широких линий поглощена газопылевым тором, а если смотреть перпендикулярно к плоскости тора, то увидим AGN первого типа.

В [4] показано, что отношение оптических запрешенных линий [OIII]

4363 Å и [OIII] 5007 Å зависит от плотности, и что это отношение больше у AGN первого типа. В [4] также показано, что запрешенные линии высокой ионизации, такие как например линия [FeX] 6374 Å, относительно сильнее у AGN первого типа. Авторы работы объясняют это тем, что области излучения [OIII] и газ с высокой ионизацией находятся во внутренних областях NLR, и поэтому могут быть поглощены газопылевым тором в случае AGN второго типа. В [5] показано также, что [OIII] 5007 Å относительно слабее у AGN второго типа.

Благодаря новым уникальным достижениям, а именно доступности большого количества спектров Инфракрасного Спектрографа [6] космического телескопа "Спитцер" [7] и архива оптических спектров SDSS (Sloan Digital Sky Survey), стало возможным ответить на решающий вопрос о степени поглощения NLR в газопылевом торе, окружающем ядро активной галактики. Сравнение потоков оптических и инфракрасных линий с одинаковыми потенциалами ионизации и критическими плотностями, может служить оценкой поглощения пылью, поскольку инфракрасная эмиссия почти не подвержена поглощению по сравнению с оптическим излучением.

В этой статье мы представляем сравнение потоков оптической запрешенной линии [OIII] 5007 Å и инфракрасной запрешенной линии [NeIII] 15.55 мкм для эмпирической оценки поглошения NLR.

2. Выборка. В качестве исходного мы использовали список наблюдений с высоким разрешением (*R*~600) на инфракрасном спектрографе "Спитцер", состоящий из 1360 наблюдений. После исключения наблюдений фона мы проверили наш список на совпадение с данными из SDSS (DR8). Было обнаружено, что только 516 объектов из нашего списка имеют данные из SDSS, и только у 301 из них имеются оптические спектры. На основе этих спектров 92 из наших объектов были классифицированы как AGN, однако 4 спектра имели либо большой шум, либо линии были расширены, поэтому эти объекты были исключены из списка.

Чтобы быть уверенными, что инфракрасные и SDSS спектры принадлежат одной и той же области, мы использовали спектры низкого разрешения инфракрасного спектрографа для классификации объектов на основе эквивалентной ширины (equivalent width, далее *EW*) молекулы PAH (Polycyclic Aromatic Hydrocarbon) на 6.2 мкм [8]. Согласно этой классификации, галактики с звездообразовательной активностью (starburst galaxies, далее SB) имеют *EW*(6.2 мкм) > 0.4 мкм, для галактик, показывающих как звездообразовательную, так и AGN активность (композитные объекты), эта цифра находится между 0.1 и 0.4 мкм, а для AGN *EW*(6.2 мкм) < 0.1 мкм. Мы предположили, что в композитных объектах с 0.1 < *EW*(6.2 мкм) < 0.2 мкм преобладает активность AGN, а не звездообразовательная активность. На основе этих предположений в нашем списке были оставлены 66 AGN с

# ПОГЛОЩЕНИЕ ПЫЛЬЮ NLR У AGN

# Таблица 1

# СПИСОК ОБЪЕКТОВ

| N  | Имя объектов             | Координаты Ј2000   | Z      |
|----|--------------------------|--------------------|--------|
| 1  | 2                        | 3                  | 4      |
| 1  | 2MASX J00070361+1554240  | 000703.60+155424.0 | 0.1141 |
| 2  | MRK 1014                 | 015950.23+002340.5 | 0.1635 |
| 3  | NGC 0863                 | 021433.56-004600.1 | 0.0261 |
| 4  | 2MASX J02253126-0825082  | 022531.28-082508.7 | 0.0549 |
| 5  | 2MASX J02254444-0752067  | 022544.46-075206.2 | 0.0774 |
| 6  | UGC 02608                | 031501.47+420208.6 | 0.0231 |
| 7  | NGC 2622                 | 083810.94+245342.9 | 0.0287 |
| 8  | 2MASX J09063400+0451271  | 090634.05+045126.0 | 0.1250 |
| 9  | 2MASS J09184860+2117170  | 091848.60+211717.0 | 0.1490 |
| 10 | CGCG 121-075             | 092343.00+225432.5 | 0.0331 |
| 11 | MRK 0110                 | 092512.87+521710.5 | 0.0355 |
| 12 | PG 0923+201              | 092554.70+195405.0 | 0.1927 |
| 13 | UGC 05025                | 092603.29+124403.6 | 0.0288 |
| 14 | 3C 234                   | 100149.56+284709.3 | 0.1849 |
| 15 | PG 1001+054              | 100420.10+051300.5 | 0.1601 |
| 16 | 3C 236                   | 100601.74+345410.4 | 0.0994 |
| 17 | PG 1004+130              | 100726.11+124856.2 | 0.2407 |
| 18 | 2MASS J10272497+1219196  | 102724.90+121920.0 | 0.2309 |
| 19 | 2MASX J10321013+0652053  | 103210.20+065205.4 | 0.0528 |
| 20 | 2MASX J10402919+1053178  | 104029.17+105317.7 | 0.1364 |
| 21 | 2MASX J10514428+3539304  | 105144.20+353930.7 | 0.1588 |
| 22 | NGC 3884                 | 114612.19+202329.9 | 0.0231 |
| 23 | 2MASX J11531422+1314276  | 115314.17+131426.8 | 0.1273 |
| 24 | NGC 3982                 | 115628.10+550730.6 | 0.0037 |
| 25 | SDSS J120424.54+192509.7 | 120424.53+192509.8 | 0.1679 |
| 26 | UGC 07064                | 120443.34+311038.2 | 0.0250 |
| 27 | NGC 4235                 | 121709.88+071129.7 | 0.0076 |
| 28 | NGC 4388                 | 122546.75+123943.5 | 0.0086 |
| 29 | NGC 4395                 | 122548.92+333248.3 | 0.0011 |
| 30 | MRK 0771                 | 123203.60+200929.2 | 0.0636 |
| 31 | PG 1244+026              | 124635.24+022208.7 | 0.0481 |
| 32 | 2MASX J13000533+1632151  | 130005.40+163215.0 | 0.0799 |
| 33 | NGC 4922                 | 130125.26+291849.6 | 0.0234 |
| 34 | PG 1307+085              | 130947.00+081948.9 | 0.1538 |
| 35 | PG 1309+355              | 131217.77+351521.2 | 0.1830 |
| 36 | 2MASX J13362406+3917305  | 133624.07+391730.1 | 0.1791 |
| 37 | NGC 5273                 | 134208.38+353915.5 | 0.0036 |
| 38 | MRK 0273                 | 134442.12+555313.1 | 0.0373 |
| 39 | UGC 08782                | 135217.77+312646.1 | 0.0452 |
| 40 | NGC 5347                 | 135317.83+332927.0 | 0.0079 |
| 41 | MRK 0668                 | 140700.39+282714.7 | 0.0770 |
| 42 | 2MASX J14081868+1946223  | 140818.67+194622.7 | 0.1239 |
| 43 | NGC 5506                 | 141314.87-031227.0 | 0.0059 |
| 44 | NGC 5548                 | 141759.53+250812.4 | 0.0163 |
| 45 | 2MASX J14410437+5320088  | 144104.38+532008.7 | 0.1050 |
| 46 | IC 1065                  | 144921.80+631615.3 | 0.0417 |

## Л.САРГСЯН И ДР.

Таблица 1 (окончание)

| F  | 2                       | 3                  | 4      |
|----|-------------------------|--------------------|--------|
| 47 | PG 1448+273             | 145108.77+270927.0 | 0.0645 |
| 40 | 7MASS 114533150+1353585 | 145331.50+135358.7 | 0.1394 |
| 40 | 2MASX J15193069+5753489 | 151930.70+575348.7 | 0.0615 |
| 50 | 2MASX 115204320+3041228 | 152043.22+304122.6 | 0.0772 |
| 51 | NGC 5929                | 152606.20+414014.0 | 0.0083 |
| 52 | ARP 220                 | 153457.24+233011.7 | 0.0184 |
| 53 | SBS 1537+577            | 153810.05+573613.1 | 0.0737 |
| 54 | IRAS F16300+1558        | 163221.40+155145.5 | 0.2418 |
| 55 | 2MASS J16370022+2221140 | 163700.20+222114.0 | 0.2108 |
| 56 | 2MASS J16593976+1834367 | 165939.80+183436.9 | 0.1709 |
| 57 | SBS 1704+608            | 170441.37+604430.5 | 0.3715 |
| 58 | MRK 0926                | 230443.40-084108.0 | 0.0470 |
| 59 | PG 2349-014             | 235156.13-010913.4 | 0.1738 |

красными смещениями 0.0011 < z < 0.3715. Были также исключены источники, которые не имеют эмиссионных линий в инфракрасном спектре, и поэтому наш окончательный список состоит из 59 объектов. Список представлен в табл.1, где в первом столбце приведен номер объекта, во 2 – имя объекта, в 3 – координаты из каталога "Спитцер", и в 4 – красные смещения из SDSS.

3. Измерения. Для измерения потоков в линиях были использованы инфракрасные спектры высокого (*R*~600) и низкого (*R*~60-130) разрешения. В качестве спектров высокого разрешения были взяты post-BCD (Basic Calibrated Data) спектры второго уровня. В качестве спектров низкого разрешения использовались новейшие обработанные спектры из базы данных CASSIS (Cornell Atlas of Spitzer IRS Sources) [9]. В качестве окончательных *Таблица 2* 

EW N Fv сил Fv [SIV] Fv [NeII] Fv [NeIII] Fv (OIV) Fv [OIII] 6.22 мкм 7.8 мкм 10.51 MKM 12.81 MKM 25.89 мкм 15.55 MKM 5007 Å 2 3 4 5 6 7 1 8 9 1 < 0.05 2.5 4.7 12.0 26 0.04 2 3.5 6.5 9.1 13.3 5.7 3 < 0.02 1472.4 ЭМ 1.8 2.6 2.9 10.2 4 < 0.02 0.4 3.5 пог 1.5 1.2 0.2 5 0.13 1.7 0.9 ЭМ 0.8 0.3 6 0.12 60.9 ΠΟΓ 27.1 72.8 135.8 20.1 7 < 0.03 808.2 2.4 6.3 8.5 10.2 13.3 8 0.13 0.7 ΠΟΓ 0.1 9 < 0.01 1165.5 пог 1.8 24 4.0 2.0 10 < 0.001 2738.0 4.0 2.5 4.2 ЭМ 8.7 12.9

ИЗМЕРЕНИЯ

# ПОГЛОЩЕНИЕ ПЫЛЬЮ NLR У AGN

Таблица 2 (окончание)

| 1          | 2             | 3       | 4    | 5    | 6                         | 7     | 8                                     | 9    |
|------------|---------------|---------|------|------|---------------------------|-------|---------------------------------------|------|
| 11         | <0.08         | 1637.3  | ЭМ   | 1.1  |                           | 3.0   | 4.7                                   | 19.2 |
| 12         | S             |         |      |      |                           |       | 0.3                                   | 1.0  |
| 13         | <0.02         |         | ЭМ   | 2.2  | 5.1                       | 5.3   | 6.6                                   | 9.7  |
| 14         | <0.001        | 3202.6  |      | 3.9  |                           | 3.6   | 8.1                                   | 15.5 |
| 15         | -             | 611.1   | ЭМ   |      | Contraction of the second |       | and the second second                 | 1.0  |
| 16         |               |         |      |      | S                         | 2.3   |                                       | 0.4  |
| 17         | < 0.003       | 687.4   | ЭМ   | 1.7  | 0.2                       | 1.6   | 1.5                                   | 1.4  |
| 18         |               | 887.2   | пог  |      | 200                       | 0.8   |                                       | 0.6  |
| 19         | 0.04          |         | лог  | 0.2  |                           | 0.9   | LON STR.                              | 0.1  |
| 20         | 0.0           | 1183.1  | пог  | 100  | 3.4                       | 0.8   | _1 ( ) ( ) =                          | 0.2  |
| 21         | <0.01         |         | пог  | 0.6  | 3.8                       | 0.6   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.7  |
| 22         | < 0.01        | 11-1-   | ЭМ   |      | 1.8                       | 1.2   |                                       | 1.0  |
| 23         | 0.18          | 1000    | пог  |      | 7.8                       | 3.0   | 1.000                                 | 0.1  |
| 24         |               |         | 0.07 |      | 10.5                      | 9.5   | Litru X                               | 121  |
| 25         | 0.10          | 1425.1  | пог  | 2.6  | 2.9                       | 10    |                                       | 0.1  |
| 26         | 0.08          | 1005.1  |      | 3.5  | 16.2                      | 6.9   | 12.4                                  | 0.6  |
| 27         | <0.01         | 1295.1  | ЭМ   | 9.2  | 3.5                       | 4./   | 3./                                   | 20   |
| 28         | 0.04          | 10847.4 | пог  | 38.7 | /8.6                      | 108.3 | 290.1                                 | 54.9 |
| 29         | 0.06          | 235.1   |      | 1.4  | 5.0                       | 6.1   | 8.1                                   | 31.5 |
| 30         | < 0.002       | 1360.9  |      | 0.7  |                           | 1.4   | 1.9                                   | 4.4  |
| 31         | 0.01          | 2000 5  |      | 0.9  | 1 - 1                     | 0.3   | 1.5                                   | 24   |
| 32         |               | 2898.5  |      |      | 27.6                      | 1.4   |                                       | 1./  |
| 33         | 0.12          | 731.1   | пог  | 1.6  | 37.5                      | 9.8   | 4.4                                   | 3.5  |
| 34         | <0.03         | /21.1   |      | 1.2  | 0.4                       | 1.0   | 1.0                                   | 0.5  |
| 35         | 0.07          | 0.\C&   | ЭМ   | 2.2  |                           | 22    | 0.5                                   | 4.1  |
| 30         | 0.07          | 1014.0  |      | 3.2  | 5.5                       | 4.9   | 10.5                                  | 2.2  |
| 3/         | 0.10          | 1014.8  |      | 1.0  | 2.9                       | 3.9   | 4.0                                   | 0.0  |
| <i>3</i> 8 | 0.10          | 11007.0 | пог  | 8.9  | 44.4                      | 33.0  | 43.8                                  | 29   |
| 39         | 0.04          | 40.42.2 | nor  |      | 5.1                       | 3.9   | 1.2                                   | 0.2  |
| 40         | 0.03          | 4943.2  | пог  |      | 5.1                       | 4.2   | 5.9                                   | 3.0  |
| 41         | 0.02          |         | ЭМ   |      | 4.2                       | 3.5   |                                       | 0.1  |
| 42         | 0.17          | 40761.0 | пог  | 94.3 | 0.4                       | 1.5   | 242.1                                 | 25.9 |
| 43         | 0.01          | 40/01.0 | 1101 | 04.2 | 0.0                       | 130.2 | 11.2                                  | 42.4 |
| 44         | 0.01          | 40/9.1  |      | 4.0  | 9.5                       | 9.9   | 11.2                                  | 42.4 |
| 4)<br>4    | 0.11          | -       | noi  | 1.2  | 9.4                       | 4.1   | 17.9                                  | 26   |
| 40         | <0.000        | 1120.0  |      | 21   | 0.4                       | 36    | 0.1                                   | 60   |
| 4/         | <0.002        | 1129.9  |      | 5.1  | 0.0                       | 3.0   | 5.1                                   | 0.9  |
| 48         | <0.003        | 2100.9  | noi  | 0.7  | 21                        | 5.0   | 11                                    | 00   |
| 49         | 0.17          | 227.1   |      | 0.2  | 06                        | 0.0   | 1.1                                   | 0.9  |
| 50         |               | 227.1   |      |      | 10.6                      | 0.2   | 43                                    | 96   |
| 21         | 0.11          | 21026 1 |      |      | 62.0                      | 9.4   | 7.5                                   | 0.2  |
| 52         | 0.11          | 21030.1 | nor  | 0.2  | 02.9                      | 0.2   |                                       | 0.2  |
| 55         | 0.08          | 1066 4  | TOT  | 0.5  | 31                        | 0.7   | -                                     | 0.2  |
| 24         | 0.11          | 1000.4  |      |      | 5.1                       | 1.2   | 14                                    | 0.0  |
| 55         | 0.11          |         |      | 10   | 1.5                       | 29    | 65                                    | 35   |
| 20         | 10.0          | 950 1   |      | 1.9  | 1.0                       | 2.0   | 84                                    | 54   |
| 5/         | <0.01         | 2105 7  | ЭМ   | 4.2  | 0.9                       | 9.1   | 11 2                                  | 25.9 |
| 30         | <0.002        | 2195.7  |      | 5,4  | 9.0                       | 20    | 25                                    | 00   |
| 22         | <b>NU.UU2</b> | 1030.0  |      | 0.8  | 1.5                       | 2.0   | 0.0                                   | 0.9  |

509

мы использовали средние значения потоков, измеренных на спектрах высокого и низкого разрешения (если оба спектра имелись), что делает наши измерения более точными.

Программа, использовавшаяся нами для измерения потоков, называется SPLAT (Starlink Spectral Analysis Tool, http://star-www.dur.ac.uk/~pdraper/splat/index.html).

Все измерения представлены в табл.2, где в столбце 1 приведен номер объекта, соответствующий табл.1, в 2 - эквивалентная ширина молекулы РАН на 6.2 мкм, в 3 - плотность потока на 7.8 мкм, измеренная для объектов, не имеющих полосы молекулы РАН на 7.7 мкм в 10<sup>-21</sup> Вт см<sup>-2</sup>, в 4 - информация о том, наблюдается ли полоса силикатов на 9.7 мкм в эмиссии (эм), или в абсорбции (абс), в столбцах 5, 6, 7, 8, соответственно приведены потоки для запрещенных линий [SIV] 10.51 мкм, [NeII] 12.81 мкм, [NeIII] 15.55 мкм и [OIV] 25.89 мкм в 10<sup>-21</sup> Вт см<sup>-2</sup>, в 9 - поток в оптической запрещенной линии [OIII] 5007 Å в 10<sup>-21</sup> Вт см<sup>-2</sup>.

4. Обсуждение. Для оценки поглощения оптических запрещенных линий обусловленного пылью, мы сравнили отношения потоков в линиях [NeIII] 15.55 мкм и [OIII] 5007 Å. Ионизационные потенциалы [NeIII] 15.55 мкм и [OIII] 5007 Å соответственно равны 41 эВ и 35 эВ, а критические плотности 7.10<sup>5</sup> см<sup>-3</sup> и 2.10<sup>5</sup> см<sup>-3</sup>, так что можно предположить, что эти линии возникают в одной и той же области.

Результаты представлены на рис.1. Значение медианы log[NeIII]/[OIII] равно 0.085 с дисперсий ~±0.6.



Рис.1. Сравнение отношений потоков линий [NeIII] 15.55 мкм и [OIII] 5007 А. Горизонтальная линия соответствует медиане отношения потоков; перпендикулярная ей линия показывает дисперсию.

Чтобы определить дисперсию отношений потоков, обусловленную иными эффектами, кроме поглощения, необходимо сравнить две линии в инфракрасном диапазоне спектра, возникающие в одной и той же области (т.е. имеющие одинаковые потенциалы ионизации и критические плотности), поскольку поглошение пылью практически не влияет на инфракрасное излучение. К сожалению, такие запрещенные линии в наших инфракрасных спектрах не наблюдаются. Поэтому мы выбрали три линии: [SIV] 10.51 мкм, [NeII] 12.81 мкм и [OIV] 25.89 мкм. Линии [NeII] и [SIV] имеют близкие ионизационные потенциалы (21.56 и 34.79 эВ, соответсвенно), но разные критические плотности ( $6 \cdot 10^5$  и  $4 \cdot 10^4$  см<sup>-3</sup>, соответственно). Линии [OIV] и [SIV] имеют сходные критические плотности (критическая плотность запрещенной линии [OIV] равна  $9 \cdot 10^3$  см<sup>-3</sup>), но различные потенциалы ионизации (ионизационный потенциал запрещенной линии [OIV] равен 54.93 эВ). На рис.2(а) и (b) представлены соответственно отношения потоков [NeII] 12.81 мкм и [OIV] мкм к потоку линии [SIV] 10.51 мкм.



Рис.2. а) Отношение потока запрещенной линии [NeII] 12.81 мкм к потоку запрещенной линии [SIV] 10.51 мкм, имеющих близкие потенциалы ионизации, но разные критические плотности, b) отношение потоков запрешенных линий [OIV] 25.89 мкм и [SIV] 10.51 мкм, с одинаковыми критическими плотностями, но с разными потенциалами ионизации. Горизонтальная линия соответствует медиане отношения, а перпендикулярная линия - дисперсии.

Эти рисунки показывают, что дисперсии, обусловленные разницей в критических плотностях (~±0.39) или разницей в потенциалах ионизации (~±0.19), намного меньше, чем дисперсия для отношения [NeIII]/[OIII]. Это указывает, что дисперсия на рис.1 в основном вызвана результатом поглощением пылью.

Для сравнения с "Объединенной моделью" мы разделили наши объекты на три группы: на объекты, которые в своих инфракрасных спектрах показывают полосу силикатов на 9.7 мкм в поглощении (22 объекта), в эмиссии (10 объектов), и на объекты, в спектрах которых полоса силикатов вовсе не наблюдается (27 источников). Примеры спектров этих 3-х видов источников приведены на рис.3. Если полоса силикатов наблюдается в поглощении, то это означает, что мы наблюдаем объект вдоль плоскости газопылевого тора - как в случае AGN второго типа. В случае, если полоса силикатов наблюдается в эмиссии, луч зрения перпендикулярен к плоскости тора, так что мы видим только непоглощенную горячую область пылевых облаков, как в случае AGN первого типа. В случае, когда полоса силикатов вовсе не наблюдается, поглощение и эмиссия компенсируют друг друга. Такие объекты могут иметь любую оптическую классификацию (т.е. могут быть AGN как первого типа, так и второго типа).



При использовании разных символов для объектов с полосой силикатов в эмиссии, в поглощении и при отсутствии полосы, график, представленный на рис.1, приобретает показанный вид на рис.4.

Из рис.4 видна очевидная зависимость отношения [NeIII]/[OIII] от типа объекта на основе полосы силикатов. Это отношение больше для объектов, у которых полоса силикатов в инфракрасном спектре наблюдается в поглощении (медиана логарифма отношения равна 0.62), и меньше для источников с полосой силикатов в эмиссии, где медиана логарифма отношения равна -0.25. Медиана логарифма отношения для объектов, у которых полоса силикатов не наблюдается в инфракрасном спектре, равна -0.10. Большие значения отношений инфракрасных потоков к оптическим показывают, что у некоторых AGN NLR подвержена поглощению AGN, у которых полоса силикатов наблюдается в эмиссии, и которые в основном являются AGN первого типа.



Рис.4. Тот же график, что и на рис.1, но с использованием разных символов для источников с полосой силикатов в эмиссии (открытые квадраты), в поглошении (круги), и источников, не показывающих полосу силикатов в спектре (треугольники).

Если предположить, что поглошение оптического излучения у объектов с эмиссией в полосе силикатов отсутствует, то получается, что в случае источников с поглощением в этой полосе приблизительно 87% излучения в оптических запрещенных линиях поглощено газопылевым тором.

Мы использовали также другую независимую оценку поглощения пылью. Для этого мы использовали отношение плотности потока непрерывного спектра на vfv (7.8 мкм) к плотности потока оптической запрешенной линии [OIII] 5007 Å. Плотность потока на vfv (7.8 мкм) представляет собой эмиссию от горячей пыли в торе, окружающем область широких линий, и не связана с эмиссией из NLR. У некоторых источников в инфракрасном



Рис.5. Сравнение плотности потока континуума от горячей пыли на vfv (7.8мкм) с потоком оптической запрешенной линии [OIII] 5007 Å. Символы те же, что на рис.4.

спектре наблюдается полоса молекулы РАН на 7.7 мкм, и в этом случае трудно определить поток от непрерывного спектра. Поэтому были использованы спектры объектов, в которых эта полоса не наблюдается, и континуум может быть достоверно определен. Результаты представлены на рис.5, где использованы те же символы, что и на рис.4.

Это сравнение показывает, что медиана логарифма отношения для объектов с полосой силикатов в поглощении равна ~3.39, ~2.32 для объектов с этой полосой в эмиссии, и ~2.14 для источников, не имеющих этих признаков. Этот результат подтверждает, что оптическая эмиссия слабее по сравнению с инфракрасной эмиссией у объектов с полосой силикатов в поглощении. Это отношение показывает, что ~91% оптического излучения источников с полосой силикатов в поглощении поглосой силикатов в поглощении. Это отношение показывает, что ~91% оптического излучения источников с полосой силикатов в поглощении поглощен пылью по сравнению с источниками с полосой силикатов в эмиссии. Здесь мы тоже предположили, что поглощение у источников с полосой силикатов в эмиссии отсутствует.

Таким образом, два независимых анализа на рис.4 и 5 показали аналогичные значения для поглошения оптического излучения NLR.

5. Заключение. Для оценки поглошения оптического излучения NLR v AGN мы сравнили поток инфракрасной запрешенной линии [NeIII] 15.55 мкм с потоком оптической запрешенной линии [OIII] 5007 Å, которые имеют близкие потенциалы ионизации и критические плотности. Мы разделили наши объекты на три группы на основе полосы силикатов на 9.7 мкм. наблюдаемой в инфракрасном спектре: на объекты, у которых эта полоса наблюдается в поглощении (в основном AGN второго типа), в эмиссии (в основном AGN первого типа), и на источники, где эта полоса не наблюдается. Наши результаты показывают, что отношение потоков в инфракрасных линиях к потокам оптических линий у объектов с полосой силикатов в поглощении больше, чем у AGN с этой полосой в эмиссии. Если предположить, что для AGN, у которых полоса силикатов наблюдается в эмиссии, оптическое излучение NLR не подвергается поглошению, то из этого следует, что для объектов с полосой силикатов в поглошении приблизительно 87% оптического излучения NLR поглощается газопылевым тором, окружающим AGN. Независимая оценка на основе отношения плотности потока излучения горячей пыли на 7.8 мкм и потока в оптической запрещенной линии [OIII] 5007 Å показала, что ~91% оптического излучения NLR поглошается пылевым тором.

Авторы благодарят Т.Мовсесяна и Д.Видмана за полезные советы. Данная работа осуществлена благодаря исследовательскому гранту ANSEF (Armenian National Science and Education Fund).

<sup>1</sup> Университет Корнелла (США), e-mail: sargsyan@isc.astro.cornell.edu <sup>2</sup> Бюраканская астрофизическая обсерватория им. В.А.Амбарцумяна, Армения

### ПОГЛОЩЕНИЕ ПЫЛЬЮ NLR У AGN

# DUST OBSCURATION OF THE NARROW LINE REGION OF AGN

## L.SARGSYAN<sup>1</sup>, M.GEVORGYAN<sup>2</sup>, H.V.ABRAHAMYAN<sup>2</sup>, G.KOSTANDYAN<sup>2</sup>, G.PARONYAN<sup>2</sup>, A.SAMSONYAN<sup>2</sup>, D.SARGSYAN<sup>2</sup>, P.SINAMYAN<sup>2</sup>

To estimate the dust absorption of the NLR of AGN, we have compared the infrared [NeIII] 15.55  $\mu$ m line and optical [OIII] 5007 Å line fluxes of 59 galaxies having SDSS and IRS low and high resolution spectra. Dividing our objects into objects with infrared spectra showing silicate feature at 9.7  $\mu$ m in absorption, in emission, and without this feature in their spectra, we determined that ~87% of the emission from the NLR for objects with silicate absorption is absorbed by the dusty torus surrounding the AGN.

Key words: galaxies:dust:absorption

## ЛИТЕРАТУРА

- 1. D.E.Osterbrock, QJRAS, 25, 1, 1984.
- 2. E.Y.Khachikian, D.W.Weedman, Astrophys. J., 192, 581, 1974.
- 3. R.R.J.Antonucci, ARA&A, 31, 69, 1993.
- 4. T.Nagao, T.Murayama, Y.Taniguchi, Astrophys. J., 549, 155, 2001.
- 5. M.Melendez, S.B.Kraemer et al., Astrophys. J., 682, 94, 2008a.
- 6. J. Houck, T. Roellig et al., Astrophys. J. Suppl. Ser., 154, 18, 2004.
- 7. M. Werner, T. Roellig et al., Astrophys. J. Suppl. Ser., 154, 1, 2004.
- 8. D.W. Weedman, J.R. Houck, Astrophys. J., 370, 693, 2009.
- 9. V.Lebouteiller, J.Bernard-Salas et al., Publ. Astron. Soc. Pacif., 122, 231L, 2010.