АСТРОФИЗИКА

TOM 55

АВГУСТ, 2012

выпуск 3

АНАЛИТИЧЕСКОЕ РЕШЕНИЕ ДЛЯ КИНЕТИЧЕСКОГО РАВНОВЕСИЯ ПО β-ПРОЦЕССАМ В НУКЛОННОЙ ПЛАЗМЕ С РЕЛЯТИВИСТСКИМИ ПАРАМИ

Г.С.БИСНОВАТЫЙ-КОГАН Поступила 30 мая 2012

Получено аналитическое решение для кинетического равновесия по β -процессам в нуклонной плазме с релятивистскими парами. Нуклоны (n, ρ) предполагаются нерелятивистскими и невырожденными (их масса считается бесконечной), в то время как электроны и позитроны предполагаются ультрарелятивистскими из-за большой температуры ($T > 6 \cdot 10^9$ K), или высокой плотности ($\rho > \mu 10^6$ г/см³), или то и другое вместе. Здесь μ определяет число нуклонов на один электрон. Рассмотрение удается упростить благодаря аналитической связи плотности с химическим потенциалом электронов в ультрарелятивистской плазме, а также использованию модифицированного метода Гаусса для вычисления функций Ферми. Химический потенциал электронов и число нуклонов на один начальный электрон рассчитаны как функции ρ и T.

Ключевые слова: релятивистская плазма:кинетическое В -равновесие

1. Введение. В процессе коллапса, ведущего к образованию нейтронной звезды, вещество проходит состояния с очень высокими температурами и плотностями, при которых происходит интенсивное рождение нейтрино. В горячем ядре вновь рожденной нейтронной звезды непрозрачность по отношению к нейтрино достаточно велика для установления термодинамического равновесия по в -процессам. Области вне нейтриносферы почти прозрачны по отношению к нейтрино, поэтому термодинамическое равновесие установиться не может. В [1] было показано, что характерное время процессов слабого взаимодействия вокруг нейтриносферы может быть много меньше характерного гидродинамического времени. В этих условиях устанавливается кинетическое равновесие, при котором отношение числа нейтронов к протонам определяется из условия равенства скоростей рождения и уничтожения протонов (нейтронов). Детальное исследование кинетического β-равновесия в нуклонном (n - p) газе было сделано численно в [1] для общего случая р и Т. Частные случаи кинетического В -равновесия в холодной pne, и очень горячей pne[±] плазме исследовались численно в [2], где автор описывает кинетическое в -равновесие приближенно, в терминах соотношений между химическими потенциалами нуклонов и пар, аналогично [3]. При больших плотностях, и увеличении степени вырождения электронов, точность этого приближения ухудшается.

В настоящей работе задача о кинетическом β -равновесии рассмотрена лля случая ультрарелятивистских пар с нуклонами, массы которых считаются очень большими, по сравнению с массой-энергией пар. Этот случай рассмотрен без каких-либо дополнительных упрошений, и решается сравнительно просто, благодаря аналитической связи плотности вещества р с химическим потенциалом электронов μ, найденной в [4], см. также [5]. Использование модифицированного метода Гаусса для вычисления функций Ферми, предложенного в [6], позволяет получить полностью аналитическое решение для этого случая.

2. Скорости β - реакций. Рассмотрим кинетическое равновесие для ультрарелятивистских пар относительно следующих процессов

$$e^{-} + p \rightarrow n + v_{e}, \quad (a)$$

$$e^{+} + n \rightarrow p + \widetilde{v}_{e}. \quad (b) \qquad (1)$$

Вероятности реакций (1) для бесконечно тяжелых ядер записываются в виде [1,7]

$$W^{(a)} = \left[\ln 2 / (Ft_{1/2})_n \right] (kT/m_e c^2)^5 I_2 ,$$

$$W^{(b)} = \left[\ln 2 / (Ft_{1/2})_n \right] (kT/m_e c^2)^5 J_2 .$$
(2)

Здесь $(Ft_{1/2})_n \approx 1200$ есть характерная величина для распада нейтрона. Интегралы *I*, и *J*, определяются в виде

$$I_{2} = \int_{0}^{\infty} x^{2} (x + x_{0}) \sqrt{(x + x_{0})^{2} - \alpha^{2}} [1 + \exp(x + x_{0} - \beta)]^{-1} dx , \qquad (a)$$
$$J_{2} = \int_{0}^{\infty} (x + x_{0} + \alpha)^{2} (x + \alpha) \sqrt{x^{2} + 2\alpha x} [1 + \exp(x + \alpha + \beta)]^{-1} dx . \qquad (b)$$

Здесь

$$x_0 = \Delta_{np}/kT, \quad \Delta_{np} = m_n - m_p \approx 1.29 \text{ MeV},$$

$$\alpha = m_e c^2/kT, \quad \beta = \mu_e/kT.$$
(4)

Для позитронов химический потенциал $\mu_{e^*} = -\mu_e$. В верхнем интеграле (3) определен как $x = (E_e/kT) - x_0$, а в нижнем $-x = (E_{e^*}/kT) - \alpha$, $(E_{ee^*} = \sqrt{p^2c^2 + m_ec^2})$, p - импульс электрона (позитрона).

В ультрарелятивистской плазме $x + x_0 >> \alpha$ в случае (а) и $x >> \alpha$ в случае (b). Таким образом, интегралы (3) упрощаются к виду

$$I_{2} = \int_{0}^{\infty} x^{2} (x + x_{0})^{2} [1 + \exp(x + x_{0} - \beta)]^{-1} dx , \quad (a)$$

$$J_{2} = \int_{0}^{\infty} (x + x_{0})^{2} x^{2} [1 + \exp(x + \beta)]^{-1} dx . \quad (b)$$
(5)

Вводя Ферми интегралы

$$F_n(\alpha) = \int_0^\infty \frac{x^n dx}{1 + \exp(x - \alpha)} \,. \tag{6}$$

Запишем интегралы (5) в виде

$$I_{2} = F_{4}(\beta - x_{0}) + 2x_{0}F_{3}(\beta - x_{0}) + x_{0}^{2}F_{2}(\beta - x_{0}),$$

$$J_{2} = F_{4}(-\beta) + 2x_{0}F_{3}(-\beta) + x_{0}^{2}F_{2}(-\beta).$$
(7)

При наличии ультрарелятивистских пар в термодинамическом равновесии, связь плотности ρ , температуры T и числа нуклонов на один протон $\mu = (n_{\rho} + n_{n})/n_{\rho}$ с безразмерным химическим потенциалом электронов β в нуклонной плазме с произвольной степенью вырождения пар, и невырожденными, нерелятивистскими нуклонами, определяется аналитически в виде [4,5,7]

$$\frac{\rho}{\mu m_{\rho}} = \frac{1}{3\pi^2} (kT/\hbar c)^3 (\beta^3 + \pi^2 \beta).$$
(8)

3. Кинетическое β-равновесие. При тех параметрах плазмы, когда электронно-позитронные пары являются ультрарелятивистскими, кинетическое β-равновесие обеспечивается балансом процессов захвата электронов и позитронов нуклонами, а вклад от радиоактивного распада

Таблица 1

ЗАВИСИМОСТЬ БЕЗРАЗМЕРНОГО ХИМИЧЕСКОГО ПОТЕНЦИАЛА $\beta = \mu_e/kT$ И ЧИСЛА НУКЛОНОВ НА ОДИН ПЕРВИЧНЫЙ ЭЛЕКТРОН $\mu = 1 + n_n/n_p$, В ЗАВИСИМОСТИ ОТ ПЛОТНОСТИ ρ , ДЛЯ ФИКСИРОВАННЫХ ЗНАЧЕНИЙ ТЕМПЕРАТУРЫ, $T = 10^{10}$ К (слева), и $T = 2 \cdot 10^{10}$ К (справа), В КИНЕТИЧЕСКОМ β -РАВНОВЕСИИ С УЛЬТРАРЕЛЯТИВИСТСКИМИ ПАРАМИ, В НУКЛОННОЙ ПЛАЗМЕ С $\Delta_{nn} = 1.293$ MeV (соответствует $1.5 \cdot 10^{10}$ К)

<i>T</i> (K)	р (г/см ³)	β	μ	<i>T</i> (K)	р (г/см ³)	β	μ
1010	$5.72 \cdot 10^{3}$	10-1	1.23	$2 \cdot 10^{10}$	5.50 · 10 ⁴	10-4	1.48
1010	5.72 · 10 ⁴	10-3	1.23	2.1010	5.51 · 10 ⁵	10-3	1.48
1010	2.86 · 10 ⁵	0.005	1.23	2.10 ¹⁰	$2.76 \cdot 10^{6}$	0.005	1.49
1010	5.74 · 10 ⁵	0.01	1.24	2 · 10 ¹⁰	5.54 · 10 ⁶	0.01	1.49
1010	1.15 · 10 ⁶	0.02	1.24	2 · 10 ¹⁰	1.11.107	0.02	1.50
1010	2.91 · 10°	0.05	1.25	2 · 10 ¹⁰	2.84 · 10 ⁷	0.05	1.53
1010	5.95 · 10 ⁶	0.1	1.28	2 · 1010	5.89 · 10 ⁷	0.1	1.58
1010	$1.25 \cdot 10^{7}$	0.2	1.34	2 · 10 ¹⁰	1.28 · 10 ⁸	0.2	1.71
1010	$2.84 \cdot 10^{7}$	0.4	1.50	2 · 10 ¹⁰	3.10 · 10 ⁸	0.4	2.05
1010	5.04 · 107	0.6	1.75	2 · 10 ¹⁰	5.89 · 10 ⁸	0.6	2.55
1010	8.32 · 10 ⁷	0.8	2.10	$2 \cdot 10^{10}$	1.04 · 10 ⁹	0.8	3.29
1010	$1.35 \cdot 10^{8}$	1	2.63	2 · 10 ¹⁰	1.79 - 109	1	4.38
1010	4.56 · 10 ⁸	1.5	5.33	$2 \cdot 10^{10}$	6.78 · 10 ⁹	1.5	9.91
1010	$1.62 \cdot 10^{9}$	2	12.4	2.1010	2.54 · 10 ¹⁰	2	24.3
1010	5.87 · 10 ⁹	2.5	30.9	2-1010	9.30 · 10 ¹⁰	2.5	61.3
1010	2.09 · 10 ¹⁰	3	78.5	2 · 10 ¹⁰	3.31.1011	3	155
1010	7.25.10 ¹⁰	3.5	199	2 · 10 ¹⁰	1.13.1012	3.5	389
1010	2.43 · 10 ¹¹	4	499		and the second		

Таблица 2

TEMITERATIFIC, T = 0.10 At (cheba), T = 10 It (chebaa)							
T (K)	р (г/см ³)	β	μ	<i>T</i> (K)	р (г/см ³)	β	μ
6.1010	1.79.106	10-1	1.78	2.1011	$7.17 \cdot 10^{7}$	10-1	1.93
6.1010	1.79 - 107	10-3	1.79	2 · 10 ¹¹	$7.17 \cdot 10^{8}$	10-3	1.93
6.1010	8.98 · 10 ⁷	0.005	1.79	2 · 10 ¹¹	3.60 · 10 ⁹	0.005	1.94
6.1010	$1.80 \cdot 10^8$	0.01	1.80	2.10	7.24 · 10 ⁹	0.01	1.95
6.1010	3.64 · 10 ⁸	0.02	1.82	2.1011	1.46.1010	0.02	1.97
6.1010	9.35 · 10 ⁸	0.05	1.86	2 · 10 ¹¹	3.76 · 10 ¹⁰	0.05	2.02
6.1010	1.96 - 109	0.1	1.95	2 · 10 ¹¹	7.92 · 10 ¹⁰	0.1	2.13
$6 \cdot 10^{10}$	4.34 · 10 ⁹	0.2	2.16	2.1011	1.77 · 1011	0.2	2.37
6.1010	1.10.1010	0.4	2.71	2 · 10 ¹¹	4.57.1011	0.4	3.03
6.10 ¹⁰	2.20 · 10 ¹⁰	0.6	3.52	2 · 10 ¹¹	9.21 · 10 ¹¹	0.6	3.99
6.1010	4.03 · 10 ¹⁰	0.8	4.72	2.1011	1.71.1012	0.8	5.41
6.1010	7.16.10 ¹⁰	Mar. DOV	6.48	2.1011	3.06 · 10 ¹²	red Day	7.49
6.10 ¹⁰	2.84 · 1011	1.5	15.4	2.1011	1.23 · 10 ¹³	1.5	18.0
6.10 ¹⁰	1.08 · 10 ¹²	2	38.4	2.1011	4.71 · 10 ¹³	2	45.1
6 · 10 ¹⁰	3.98 · 10 ¹²	2.5	97.1		it notostine	an in said	and and a second
6.1010	1.41.1013	3	245		-		

ТО ЖЕ, ЧТО В ТАБЛ.1, ДЛЯ ФИКСИРОВАННЫХ ЗНАЧЕНИЙ ТЕМПЕРАТУРЫ. $T = 6 \cdot 10^{10}$ К (слева), $T = 2 \cdot 10^{11}$ К (справа)

Таблица 3

ТО ЖЕ, ЧТО В ТАБЛ.1, ДЛЯ ФИКСИРОВАННЫХ ЗНАЧЕНИЙ ТЕМПЕРАТУРЫ, $T = 6 \cdot 10^{11}$ К (слева), $T = 1.5 \cdot 10^{12}$ К (справа)

<i>T</i> (K)	р (г/см ³)	β	μ	<i>T</i> (K)	р (г/см³)	β	μ
6.1011	1.79 - 106	10-5	1.78	$1.5 \cdot 10^{12}$	$7.17 \cdot 10^{7}$	10-5	1.93
6.1011	1.79 - 107	10-4	1.79	1.5.1012	7.17 · 10 ⁸	10-4	1.93
6.1011	8.98 · 10 ⁷	10-3	1.79	1.5 · 10 ¹²	$3.60 \cdot 10^{9}$	10-3	1.94
6.1011	1.80 · 10 ⁸	0.005	1.80	1.5 · 1012	7.24 · 10 ⁹	0.005	1.95
6 · 10 ¹¹	$3.64 \cdot 10^8$	0.01	1.82	$1.5 \cdot 10^{12}$	1.46 · 10 ¹⁰	0.01	1.97
6 · 10 ¹¹	9.35 · 10 ⁸	0.02	1.86	1.5 - 1012	3.76 · 10 ¹⁰	0.02	2.02
6.10	1.96 • 10	0.05	1.95	1.5 - 1012	7.92 · 10 ¹⁰	0.05	2.13
6 · 10 ¹¹	4.34 - 109	0.1	2.16	1.5 - 1012	1.77 · 10	0.1	2.37
6.10	1.10.10	0.2	2.71	1.5.1012	4.57 - 1011	0.2	3.03
6.10 ¹¹	2.20 - 10	0.4	3.52	1.5.1012	9.21 - 1011	0.4	3.99
6.10 ¹¹	4.03.10	0.6	4.72	1.5.1012	1.71.10 ¹²	0.6	5.41
6 · 10 ¹¹	7.16.10	0.8	6.48	1.5 · 10 ¹²	3.06.1012	0.8	7.49
6 · 10 ¹¹	2.84.10	1	15.4	1.5 · 1012	1.23 · 10 ¹³	1	18.0
6.10	1.08 - 1012	1.5	38.4	$1.5 \cdot 10^{12}$	4.71.1013	1.5	45.1
6.10	3.98 . 1012	2	97.1	$1.5 \cdot 10^{12}$	1.73 10 ¹⁴	2	114
6 · 10 ¹¹	1.41.1013	2.5	245	$1.5 \cdot 10^{12}$	6.11·10 ¹⁴	2.5	287

нейтронов пренебрежимо мал. В этих условиях уравнение баланса при кинетическом равновесии по β-процессам записывается в виде

$$n_p W^{(a)} = n_n W^{(b)}, \quad \mu = 1 + \frac{W^{(a)}}{W^{(b)}} = 1 + \frac{I_2}{J_2}.$$
 (9)

НУКЛОННАЯ ПЛАЗМА

Рис.1. Зависимости безразмерного химического $\beta = \mu_{,k}/kT$ и числа нуклонов на один первичный электрон $\mu = 1 + n_{,a}/n_{,a}$ от плотности ρ (г/см¹) для фиксированного значения температуры $T = 10^{10}$ К, в кинетическом β -равновесии с ультрарелятивистскими парами, в нуклонной плазме с $\Delta_{ag} = 1.293$ МэВ (соответствует $1.15 \cdot 10^{10}$ К).

Рис.3. То же, что на рис.1, для фиксированного значения температуры, $T = 6 \cdot 10^{10}$ К. Для невырожденных нуклонов плотность не должна превышать $1.3 \cdot 10^{13}$ г/см³, согласно (15).

Рис.2. То же, что на рис.1, для фиксированного значения температуры, $T = 2 \cdot 10^{10}$ К.

Рис.4. То же, что на рис.1, для фиксированного значения температуры, $T = 2 \cdot 10^{11}$ К. Для невырожденных нуклонов плотность не должна превышать $8.1 \cdot 10^{13}$ г/см³, согласно (15).

В условиях ультрарелятивистских пар связь термодинамических функций пар с температурой T и плотностью ρ сводится к зависимости от комбинации ρ/T^3 . Вводя безразмерную переменную

$$Z = 3\pi^2 \frac{\rho}{m_p} (\hbar c/kT)^3 , \qquad (10)$$

из (8) и (9) следует, что уравнение, определяющее зависимость $\beta(Z, x_0)$, в условиях кинетического β -равновесия имеет вид

$$Z = \left(\beta^3 + \pi^2 \beta\right) \left(1 + \frac{I_2}{J_2}\right),\tag{11}$$

где интегралы $I_2(\beta, x_0), J_2(\beta, x_0)$ определены в (7). Химический состав, определяемый величиной μ , задается соотношением

$$\mu = \frac{Z}{\beta^3 + \pi^2 \beta} \,. \tag{12}$$

Зависимости $\beta(\rho)|_{T}$ и $\mu(\rho)|_{T}$ в кинетическом β -равновесии приведены на рис.1-6.

Те же зависимости приведены в табл.1-3. Результаты приведенные на рис.1-6 и табл.1-3 совпадают с численными расчетами работы [1], приведенными на рис.1-3 этой статьи.

Рис.5. То же, что на рис.1, для фиксированного значения температуры, $T = 6 \cdot 10^{11}$ К. Для невырожденных нуклонов плотность не должна превышать $4.2 \cdot 10^{14}$ г/см³, согласно (15).

Рис.6. То же, что на рис.1, для фиксированного значения температуры, $T = 1.5 \cdot 10^{12}$ К. Для невырожденных нуклонов плотность не должна превышать $1.7 \cdot 10^{15}$ г/см³, согласно (15).

4. Обсуждение. Заметим, что в работе [1] все интегралы и алгебраические уравнения для определения состава нуклонной плазмы в кинетическом, β -равновесии решались численно для общего случая. Здесь мы получили для частного случая ультрарелятивистских пар решение в аналитическом виде. В [2] зависимость $\beta(\rho, T)$ была получена с использованием приближенного подхода, а также для случая ультрарелятивистских пар, в то время как в данной работе этот случай исследован аналитически в точной постановке. Точный аналитический подход, используемый здесь для описания кинетического β -равновесия в нуклонной плазме, может быть легко обобщен для смеси ядер, находящихся либо в условиях ядерного равновесия, либо в случае замороженного ядерного состава. При этом в задаче будет присутствовать несколько параметров $x_{77'} = \Delta_{77'}/kT$, опре-

деляющих энергию β -распада соседних ядер. Использование аналитической связи между β , ρ и μ в ультрарелятивистском случае должно привести к сушественному упрошению расчетов, проведенных численно в [8] для общего случая.

Кинетическое β -равновесие применимо для областей вокруг нейтриносферы в расчетах взрыва сверхновых с коллапсирующим ядром. Температура T_{ν} и плотность ρ_{ν} в области нейтриносферы рассчитывались в [9], откуда имеем

$$T_{v} = 4.5 \cdot 10^{10} - 6.3 \cdot 10^{10} \text{ K},$$

$$p_{v} = 3 \cdot 10^{11} - 3 \cdot 10^{12} \text{ r/cm}^{3}.$$
(13)

Полученные в данной работе результаты применимы в том случае, когда нуклоны являются нерелятивистскими и невырожденными. Ферми импульс нейтронов (протонов) $p_n(p_p)$ в полностью вырожденном газе записывается в виде [7]

$$\frac{p_{n,p}}{m_{n,p}c} \approx \left(\frac{\rho_{n,p}}{6.2 \cdot 10^{15} \text{ r/cm}^3}\right)^{1/3},$$
(14)

где $m_n c^2 = 931.5 \text{ МэB} = k 5.4 \cdot 10^{12} \text{ K}$. Из сравнения с (13) следует, что вблизи нейтриносферы нуклоны всегда остаются нерелятивистскими. Для невырожденных нерелятивистских нейтронов их "Ферми энергия" E_{F_e} должна быть меньше, чем 1.5 kT. В результате имеем соотношение

$$E_{Fe} = \frac{m_n c^2}{2} \left(\frac{\rho_n}{6.2 \cdot 10^{15} \text{ r/cm}^3} \right)^{2/3}, \quad E_{Fe} = \frac{3}{2} kT$$
при $T = T_d = 3.6 \cdot 10^{10} \text{ K} \left(\frac{\rho_n}{6.2 \cdot 10^{12} \text{ r/cm}^3} \right)^{2/3}$
(15)

Из сравнения с (13) следует, что температура в области нейтриносферы T_v всегда больше, чем T_{a^n} так что приближение нерелятивистских и невырожденных нуклонов всегда выполняется в области нейтриносферы.

Работа была частично поддержана грантом РФФИ 11-02-00602, Программой РАН "Происхождение и эволюция объектов Вселенной", и грантом Президента РФ по поддержке ведущих научных школ НШ-3458.2010.2.

Приложение

(16)

Вычисление функций Ферми обобщенным методом Гаусса. Ведем функцию

$$f(x,\alpha)=\frac{1}{e^{-x}+e^{-\alpha}},$$

и запишем функцию Ферми $F_n(\alpha)$ в виде

$$F_n(\alpha) = \int_0^\infty f(x, \alpha) x^n e^{-x} dx . \qquad (17)$$

Метод Гаусса для вычисления определенного интеграла на интервале от (-1) до (1), предполагает сведение его к вычислению алгебраического выражения, в котором используется значение подынтегральной функции f(x) в *m* фиксированных узлах x_p и вычисляется сумма этих значений с фиксированными коэффициентами A_p $i \le m$. Для полиномиальной функции f(x) этот метод дает точное значение интеграла, когда степень полинома $p \le 2m-1$. Таким образом, используется представление

$$\int_{-1}^{1} f(x) dx = \sum_{i=1}^{m} A_i f(x_i), \qquad (18)$$

где рассчитанные значения x_i и A_i для различного числа узлов, от m = 2 до m = 96 приведены в [10]. Для расчета несобственных интегралов с бесконечным верхним пределом лучше использовать модифицированный метод Гаусса, в котором интегралы с различным асимптотическим поведением записываются в виде

$$\int_{0}^{\infty} f(x) x^{n} e^{-x} dx = \sum_{i=1}^{m} A_{ni} f(x_{ni}).$$
(19)

Значения A_{nl} и x_{nl} были вычислены в [6] для m = 5, n = 0, 1, 2, 3, 4, см. также [7]. Значения для n = 2, 3, 4 приведены в табл.4. Ферми функции из (7), с $f(x, \alpha)$ из (16), записываются в виде $F_2(\alpha) = 0.52092 \cdot f(1.0311, \alpha) + 1.0667 \cdot f(2.8372, \alpha) + 0.38355 \cdot f(5.6203, \alpha) +$

 $+0.028564 \cdot f(9.6829, \alpha) + 2.6271 \cdot 10^{-4} \cdot f(15.828, \alpha),$ ⁽²⁰⁾

 $F_{3}(\alpha) = 1.2510 \cdot f(1.4906, \alpha) + 3.2386 \cdot f(3.5813, \alpha) + 1.3902 \cdot f(6.6270, \alpha) + 0.11904 \cdot f(10.944, \alpha) + 1.2328 \cdot 10^{-3} \cdot f(17.357, \alpha),$ (21)

Таблица 4

КОРНИ И КОЭФФИЦИЕНТЫ ДЛЯ ВЫЧИСЛЕНИЯ ИНТЕГРАЛОВ ТИПА (19) С m = 5, n = 2, 3, 4, из [6,7]

Корни <i>х</i> , и коэффициенты <i>А</i> ,	<i>n</i> = 2	n = 3	n = 4
x ,	1.0311	1.4906	1.9859
· x,	2.8372	3.5813	4.3417
<i>x</i> ,	5.6203	6.6270	7.6320
x,	9.6829	10.944	12.188
х,	15.828	17.357	18.852
Ă,	0.52092	1.2510	4.1856
Α,	1.0667	3.2386	12.877
A,	0.38355	1.3902	6.3260
A,	0.028564	0.11904	0.60475
Ă,	2.6271(-4)	1.2328(-3)	6.8976(-3)

 $F_4(\alpha) = 4.1856 \cdot f(1.9859, \alpha) + 12.877 \cdot f(4.3417, \alpha) + 6.3260 \cdot f(7.6320, \alpha) + 0.60475 \cdot f(12.188, \alpha) + 6.8976 \cdot 10^{-3} \cdot f(18.852, \alpha).$ (22)

После вычисления I₂ и J₂ в (7), значения Z, µ, T, р находятся из соотношений

$$Z = 3\pi^2 \frac{\rho}{m_\rho} \left(\frac{\hbar c}{kT}\right)^3 = \left(\beta^3 + \pi^2 \beta\right) \left(1 + \frac{I_2}{J_2}\right),$$

$$\mu = 1 + \frac{I_2}{J_2}, \quad T = \frac{\Delta}{kx_0}, \quad \rho = \frac{Zm_\rho}{3\pi^2} \left(\frac{kT}{\hbar c}\right)^3.$$
 (23)

Институт космических исследований Российской академии наук, Россия, e-mail: gkogan@iki.rssi.ru

ANALYTIC SOLUTION FOR KINETIC EQUILIBRIUM OF β-PROCESSES IN NUCLEONIC PLASMA WITH RELATIVISTIC PAIRS

G.S.BISNOVATYI-KOGAN

The analytic solution is obtained describing kinetic equilibrium of the β processes in the nucleonic plasma with relativistic pairs. The nucleons (n, p)are supposed to be non-relativistic and non-degenerate (their masses are taken equal to infinity), while the electrons and positrons are ultra-relativistic due to high temperature $(T > 6 \cdot 10^9 \text{ K})$, or high density $(\rho > \mu 10^6 \text{ g/cm}^3)$ or both, where μ is a number of nucleons per one electron. The consideration is simplified because of the analytic connection of the density with the electron chemical potential in the ultra-relativistic plasma, and modified Gauss representation of Fermi functions. Electron chemical potential and number of nucleons per one initial electron are calculated as functions of ρ and T.

Key words: relativistic plasma:kinetic β-equilibrium

ЛИТЕРАТУРА

- 1. В.С.Имшенник, Д.К.Надежин, В.С.Пинаев, Астрон. ж., 44, 768, 1967.
- 2. Ye-Fei Yuan, Phys. Rev., D72, 013007, 2005.
- 3. В.С.Имшенник, Д.К.Надежин, Астрон. ж., 42, 1154, 1965.
- 4. P. Rhodes, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 204, 396, 1950.
- 5. <u>Л.К.Надежин</u>, Научные информации Астросовета Ан СССР, выпуск 32, 3, 1974.
- 6. Г.С.Бисноватый-Коган, Я.М.Каждан, Астрон. ж., 43, 761, 1966.
- 7. G.S.Bisnovatyi-Kogan, Stellar Physics. Vol.1. Fundamental Concepts and Stellar Equilibrium, Springer, 2001.
- 8. В.М.Чечеткин, Астрон. ж., 46, 202, 1969.
- 9. D.K.Nadyozhin, Astrophys. J. Suppl. Ser., 53, 131, 1978.
- M.Abramowitz, I.A.Stegun, (eds). Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables. National Bureau of Standards Applied Mathematics Series - 55, 1964.

not an encode to be non-relativistic and when the transition when a comparison and