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The Invariance principle is applied to obtain the equations for finding the radiation field 
intensity in an inhomogeneous atmosphere. Though the behaviour of the inhomogeneity is not 
specified definitely but the absorption coefficient is assumed to depend on the optical depth. 
Such kind of depth dependence is needed because this case encounters when the elemental 
diffusion is considered in the atmospheres of Ap stars. The corresponding equations are obtained 
to solve by numerical methods.
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1. Introduction. This work has been started to tackle a very specific 
problem concerning mainly Ap-Bp stars atmospheres, but it may have more 
general applications for studies, which need radiation transfer calculations in 
optically thin and inhomogeneous media.

Ap-Bp stars are main sequence stars with effective temperature between 
about 8000 K and 16000 K, and their main characteristic is that they present 
strong abundance anomalies: in a given star, some metals may be overabundant 
by a factor up to 105 compared to the solar abundances, while some other 
elements may be underabundant (see for instance the review by Smith [1]). 
Presently, these anomalies are explained by atomic diffusion [2-3] which is 
very efficient in Ap-Bp stars because these stars are supposed to be very quiet 
regarding to superficial mixing processes such as turbulence, convection, etc. 
(see the seminal work of Michaud [4] and numerous following papers). 
Therefore, atomic diffusion cannot be neglected for such stars: elements are 
pushed upward when photons are absorbed through atomic transitions (radiative 
acceleration). According to the diffusion model, when for a given element the 
radiative acceleration is strong enough to counterbalance gravity, the element 
moves upward, otherwise it sinks. Elements accumulate at some places in the 
star according to their atomic properties and according to the way the particle 
flux varies.

The time-dependent stratification of elements due to the diffusion processes 
has been thoroughly studied in optically thick media by mean of heavy 
numerical calculations [5], but only recently and very approximately in 
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optically thin media such as Ap-Bp stare' atmosphere [6]. The reason of this 
situation is the following: the study of the stratification process needs to solve 
numerically the time-dependent continuity equation (for concentrations). This 
is heavy and very computer-time consuming. In optically thick case, radiative 
accelerations can be determined through local radiation flux. This makes such 
calculations possible, even with thousands of atomic transitions. Notice that, 
in these calculations for stellar interiors, atomic transitions are not considered 
individually: numerical codes use large opacity tables and computations are done 
with the technique of opacity sampling. This method is not possible to use 
in optically thin medium, because radiative acceleration is very sensitive to the 
line profile and line profiles are narrow in atmospheres. So, the opacity 
sampling would require too high frequency resolution in the atmosphere. On 
another hand, the continuity equation is coupled to the transfer one, and both 
of them depend on elements concentration in the whole medium (the problem 
being non-local in the optically thin case).

Alecian [7] speculated about a scenario with an unstable behavior of 
elements stratification in Ap-Bp star's atmosphere. Detailed numerical computations 
such as those made in optically thick case cannot be used to confirm this 
scenario, because of the difficulties we have just mentioned (see also the 
theoretical study by Alecian & Grappin [8]). We think that a simple model 
involving only a fictitious element, as done in numerical calculations by Alecian 
et. al (with ions having only few energy levels), can be a helpful approach, 
and could give interesting insight on the relevant physical mechanisms (namely 
to check the instability hypothesis) [6]. To prepare the ground for a better 
theoretical studies about the behavior of the abundance stratifications build-up, 
and because atomic diffusion is strongly dependent on the radiative acceleration, 
we need to study the problem of the radiation transfer in the case of strongly 
stratified abundances.

In this paper, we consider the equations of radiation transfer in the 
framework of the formalism of Ambartsumian's Invariance Principle, generalized 
for the case of inhomogeneous media [9] (see, also [10] for details). It is 
noteworthy that up to novadays mostly the medium inhomogeneity was described 
by the dependence on optical thickness of the photon's survival parameter or, 
so called, the single scattering albedo (see, [9-12] and references therein).

2. Green function formalism. It is known (see, [13]) that the probabilistic 
approach is rather fruitful for many problems in radiation transfer theory. We 
will use this approach to investigate the radiation transfer problem in a semi­
infinite inhomogeneous atmosphere. Atmosphere is considered to be one­
dimensional; however the obtained results can be easily generalized for a three- 
dimensional plane-parallel medium.

In the present paper, at first sight a little more generalized problem is
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considered than could be of interest for our main purpose. We assume that 
the atmosphere consists in an undefined mixture with known absorbing/ 
scattering properties, plus a trace element (hereafter "A" type particles) with 
known physical characteristics (two-level ion).

To operate with the formalism adopted in the radiative transfer theory, we 
use the following variables: the optical depth t and a dimensionless frequency 
x which is defined here as the distance from the center of the considered 
spectral line divided by the Doppler width.

The interaction between radiation and matter has been divided into two 
processes. The first one involves "A" type particles only and the second one 
the remaining matter. Interactions with "A" are described by an absorption 
coefficient c(t, x) = ç(r)a(x) where ç(t) represents the spatial distribution of 
"A" and a(x) the absorption profile (Voigt function for instance). The probability 
that a photon survives after interaction with "A" and returns to the radiation 
field is denoted by X(t). Interactions with remaining matter are considered to 
represent true absorptions only described by the absorption coefficient p(t, x).

Details of methods based on the Invariance Principle can be found in many 
monographs [13-15]. We would like, however, to emphasize that a generalization 
for inhomogeneous atmosphere was proposed by Sobolev (see [9-11] and 
references therein). The main idea is to consider, instead of a given atmosphere, 
a family of atmospheres for which an upper layer with optical thickness h has 
been removed (truncated atmosphere). To go further, it is useful to define a 
Green function for such a truncated source free atmosphere.

Let us denote by x', t, x)dzdx [ G+(h, x', x', t, x)</rdx] the

probability that a photon at the optical depth t' moving in any direction and 
having initially the frequency x', will be (after a series of scattering's) in the 
domain ( t, t + d r) moving upwards [inwards], in the frequency interval ( x, x+ dx ). 
For farther consideration it is more appropriate to separate this Green function 
into two functions according to the direction of the initial photon (X for outward, 
Z for inward) and express it as a sum of these components:

G = X+Z. (1)

Invariance Principle allows deriving the principal integro-differential equations 
for Green functions' components. If one adds a very thin layer Ar to the 
boundary of truncated atmosphere and takes into account all processes at first 
order of At, the following equation is obtained:

+ 9^ _ 5^ = y։ 0> ^dxf fr(< 0, x", x, x}dxT, (2)

& dh -« 

where
/(T) = X(x+A)g(x+A)

(3)
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r(x',x) is the so called frequency redistribution function (see [16-19] and 
references therein) which depends on the physical process of elementary 
scattering and describes the probability of photons reemission in a frequency 
domain (x, x+dx).

On the other hand, applying a common procedure of Invariance Principle 
approach, one can express the value of the Green function defined at a depth 
t + At [t' + At'] with respect to its value at r [t']. Then two more pairs of 
integro-differential equations can be obtained. One of them is given as follows:

T = -u(x, t', x', t, x) + /(r) f (A, t', x', t, x')dx', (4)
—CO

where v(x, r) = a(x)^(r + A)+p(r +/1, x) is the total absorption coefficient and:

T = -t>(x', r') [z’ (h, x', x', r, x) - X ’ (A, t', x', t, x)] , (5)
de

which can be written in a combined form as well:

T ^2֊ = -v(x', x')[Z(h, x', x', x, x) - X(h, x', x', x, x)]. (6)
de ՝ '

In equation (6) the quantities without superscripts are the sums of corresponding 
"half-functions". It is worth mentioning that functions X and Z in their turn 
are the solutions of the following equations:

- ^77- = -u(x', xf)X{h, x', x', t, x) + Z(t') fr(x', x’)G(/j, x', x", x, x)dx" 
de 1

(7)
= -u(x', x')z(h, x', x', x, x) + Z(r') fr(x', x')G(/i, x', x", x, x)dx“.

֊i

It should be kept in mind that the GT functions from one side and functions 

X and Z from other side describe physical processes which are actually 
reciprocal in relation to each other. Mathematically such a reciprocity principle 
can be represented for these quantities in the following form:

G_(A, x', x', t, x) = X(h, t, x, t', x') 

G+(h, x', x', x, x) = Z(h, x, x, x', x').

To conclude these developments, it is necessary to write the following combined 
equations

= Tu(x> T'> x'> T> *)± /(T) f<rT (/1, t'>x', x'}dx'+

+ /(0) jGT(A, X՛, x', 0, x')dx' jr(x', x’jx^h, 0, x", t, x)dx”՝. 
-CO -CO

The analogous equation (9) derived for a surface Green function was obtained 
by Harutyunian [12].
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3. Reflection from semi-infinite atmosphere. Let us consider the 
particular case t' = 0 and the probabilities related to a photon falling on the 
boundary of a semi-infinite atmosphere, the so called reflection problem. Here, 
reflection problem is not to be understood in a sense that we deal only with 
the quantities describing the emerging from the boundary of the medium 
intensities. For the further analysis the probabilities of appearing the initial 
photon at any depth must be of an importance as well.

In that instance, only X functions are important. Thus, using the equations 
(2), (4) and (7), one can write down the equation:

[u(x', 0)± v(x, t)]Zt(A, 0, x', t, x)-^- = /(O)p-(x', x')G^(h, 0, x', t, x)dx"±

± /(t) pr’(A, 0, x', t, x’)r(x', x')dx'+ (10)
-CO

+ /(0) pfT(A, 0, x', 0, x')dx' x‘)X*(h, 0, x', t, x)dx".

It is easy to notice that the system of two equations (10) comes to the much 
simpler equation for finding the reflection probability on the boundary of the 
medium when the final optical thickness is equal to zero - t = 0. Only X՜ 
has a non-trivial physical meaning in this case and instead of two equations, 
one obtains:

[u(x', 0)+ v(x, 0)]p(A, x', x)-^֊ = /(O)r(x', x)+ /(O)jr(x', x')p(/i, x', x)dx'+ 
O n
00

+ /(0) Jp(A, x', x')r(x’, x)dx'+ (H)

co
+ Z(o) |p(A, x', x')dx' £r(x', x’)p(A, x’, x)dx",

—co

where p(A, x', x) = X~(h, 0, x', 0, x). The equation (11) was derived taking into 

account the obvious identity:

Z"(A,0, x', 0,x)= S(x-x'). (12)

The equation (11) describes the simplest problem which is connected only with 
probabilities of photons reflection calculated on the surface of atmosphere. 
However, this concerns a rather wide series of problems.

One can write down the formal solution of (11) as follows:

p(r, x', x) = J” K(t, x', x)e~T^’ '^df, (13)

where

f) = J' [v(x', Z’)+ u(x, t’)]df (14)
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and K(t,x',x) involves the right hand side expression in (11). So having all 
the necessary quantities given for the all relevant optical depths one can solve 
the equation (13) for chosen redistribution function. It can be done by a simple 
iteration method, for instance.

The second principal quantity very important for practical uses is the 
integral of X function:

/?’(/։, t, x) = £ X’(A, 0, x', x, x)dx'. (15)

Integrating the equation over the all frequencies x', one finds:

± u(x, t)J?t (A, t, x)— ֊—- =£ u(x', ti)X*(h, 0, x', T, x)dx'+

+ /(0)£ a(x')G*(h, 0, x', t, x)dx'± l(x)t, x)r(x', x}dx' + (16)

+ /(0)E R'(h, 0, x')dx' £^r(x', x)X*(h, 0, x', x, x)dx‘,

where the normalization condition of the redistribution function is taken into 
account as well:

(17) 

The physical meaning of the quantities R^{h,x,x) is rather evident. It is easy 
to see that R*(h, r, x)d xdx is the probability that a photon will appear at 

the depth domain r, t + At, having a frequency in x, x+dx moving upwards 
or downwards if the semi-infinite atmosphere is illuminated by a radiation of 
intensity equals to 1 in all frequencies. At t = 0 one can find the value of 
the mentioned quantity on the boundary surface noting also that 0, x) = 0.

On the other hand the quantity Rf\h, 0, x) could be interpreted in other 

way if the reciprocity principle for the p function is taken into account. Then, 
one may interpret the quantity R^h, x, x)dxdx as a probability that a photon 

of frequency x incident on the boundary of semi-infinite atmosphere will be 
at the depth t moving upwards (inwards). It is worth mentioning that the same 
principle of reciprocity for Green functions allows giving various physical 
explanations for quantities R*(h, x, x)dxdx .

4. Intensities of the radiation field. Up to now, all our investigation 
concerned the probabilities of certain physical processes in a source-free 
medium. The quantities introduced had clearly probabilistic meaning and 
described only the properties of the medium. However, having all the necessary 
probabilities, one can describe the radiation field in an atmosphere for any 
distribution of primary energy sources.

Let us consider now the existence of energy sources in the atmosphere 
which are distributed according to some function e(A, t, x)[= e(A+t, x)] with a 

time-independent behavior. Using the probabilistic meaning of Green function, 
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it might be seen that the expression for intensities of the radiation field at 
any depth r in such an atmosphere will have the following form:

/’(A, t, x) = jow</r'J%(A+ < x')G^(h, r', x', r, x)dx', (18)

where the superscript and "+" again corresponds to the radiation fluxes 
which have outward and inward directions of motion.

Thus to obtain the equations for intensities one needs to multiply any of 
equations written for Green functions by e(A+t', x')dx'dx' and integrate those 

over all the depths and frequencies. So, various equations can be written down 
some combinations of which are most efficient for our purposes in further 
investigations. We will use here the equation ( 9 ) for obtaining the equations 
for intensities. As it is described above, for this purpose we are to multiply 
the both sides of the mentioned equation by e(A+t', x')dx'dx'. Let us notice 

first before overall integration that the left hand side allows preliminary 
transformations while taking the integral over the optical depth:

f“ h. , 9(?’՜
elA+T, x ) -------——Jo v ’ dx' dh

dx = -e(A, x')G^(h, 0, x', r, x)֊

J”e(A+ t', x')G*(h, x', x', t, x)dx'.
(19)

Here the first term in the left hand side is the integrated by parts and the 
obvious identity:

3e(A+1', x') = de(h+ x', x') 

dh dx' (20)

is taken into account. The overall integration of the equation (9) with the 
mentioned energy sources gives the following equations for the intensities:

^dh ^ = T> X)՜ x'՝T> x^dx'^

T t, x')r(x, x')dx'- (21)

-l(6) 0, x')dx' J2/(x'> x'jX^h, 0, x", r, x)dx",

which has a construction very similar to equation (16) written for the quantity 
(h, x, x). This means that the solutions of these two pairs of equations are 

closely related and can be expressed each by other. Moreover, in one particular 
case when energy sources are distributed according the law:

e(t, x) = [1 - X(r)}?(T)a(x) - p(t, x) , (22)

it can be shown that the quantities R* and are connected by a linear 
relation. We will not study this question in detail here and will give only the 
result for the surface values of the mentioned quantities:

r(h,Q,x) = \-R~(h,0,x). (23)
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Generally speaking, all such properties show the same physical consequences 
for a photon bom somewhere in the medium. In any case such a photon has 
only two possible ways: it will escape from its boundary or it will be "truly 
absorbed" transferring its energy to the medium.

Returning back to our problem, it must be mentioned that the purposes 
of the problem under discussion is the finding the net flux:

H(0, x, x) = 1՜ (0, r, x) - /+(0, t, x). (24)

So one can obtain instead of ( 21 ) a pair of equations in relation to the 
difference and sum of the quantities 1՜ and Z+ to write, for example, the 
formal solutions for them and find any method for numerical realization of 
it. The same could be done for equations (21) without any transformation.

5. Conclusion. Equations and relations obtained here generalize ones 
derived earlier for the homogeneous atmosphere and for comparatively simpler 
cases of inhomogeneous media. This research shows that the Invariance 
principle allows describing the multiple scattering of light in the media which 
show different types of inhomogeneity. The problem can be solved for both 
the general lows of the redistribution function and changing the form of 
inhomogeneity. A separate paper will be devoted to the numerical methods 
applicable for solution of this problem.
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ПЕРЕНОС ИЗЛУЧЕНИЯ В НЕОДНОРОДНОЙ СРЕДЕ. 
КОЭФФИЦИЕНТ ПОГЛОЩЕНИЯ, ЗАВИСЯЩИЙ ОТ

ОПТИЧЕСКОЙ ГЛУБИНЫ

Ж. АЛ ЕСИ АН, Г.А.АРУТЮНЯН

Принцип инвариантности применен, чтобы получить уравнения для 
определения интенсивности поля излучения в неоднородной атмосфере. 
Несмотря на то, что поведение неоднородности не конкретизировано, но 
предполагается, что коэффициент поглощения зависит от оптической 
глубины. Такого типа зависимость нужна, поскольку она встречается в 
задаче, когда рассматривается диффузия химических элементов в атмосферах 
Ар-звезд. Получены соответствующие уравнения для численного решения.

Ключевые слова: перенос излучения неоднородная среда
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