АСТРОФИЗИКА

TOM 55

МАЙ, 2012

выпуск 2

МОЛОДЫЕ ЗВЕЗДЫ В ГАЗОПЫЛЕВЫХ ДИСКАХ. II. ВЕГА (аLyr) И рРіс

Е.В.РУБАН, А.А.АРХАРОВ Поступила 28 сентября 2011 Принята к печати 4 апреля 2012

Проведено исследование результатов наблюдений Веги, а Lyr в диапазоне 325-1080 нм в разные годы на основе материала, храняшегося в Пулковской базе спектрофотометрических данных (ПБСД). Показано, что спектрофотометрическая температура звезды была ниже эффективной температуры по результатам всех сезонов наблюдений. Рассмотрены возможные причины этого: рассеяние излучения на мелких частицах в ультрафиолетовой области и отражение излучения на крупных частицах в длинноволновой области. Получено различие квазимонохроматических величин звезды, наблюденных в разные сезоны, на 0".01-0".02. Показано, что различие может быть связано с крупномасштабной неоднородностью распределения пыти и газа в диске. По результатам фотометрических наблюдений звезды в Ріс, представленных в каталоге Ніррагсоз, были выявлены периодические изменения величины И с периодом 4.46 d и амплитудой 0¹⁰.0085. Для интерпретации этого результата было сделано три предположения: наличие пульсаций фотосферы звезды, существование планеты на расстоянии ~0.1 а.е. и существование в околозвезаном диске области с повышенной плотностью частиц, которая, участвуя в кеплеровском врашении, периодически затмевала звезду. Предположения требуют подтверждений.

Ключевые слова: *Вега*:β *Ріс:спектрофотометрия:фотометрия:* микропеременность

1. Введение. Вторая часть работы посвящена исследованию результатов спектрофотометрических и фотометрических наблюдений Веги (α Lyr, HD 172167, BS 7001) и β Pic (HD 39060, BS 2020), окруженных протяженными газопылевыми дисками. Как было отмечено в первой части работы, в диске β Pic имеется планета. Гигантская планета β Pictoris b с массой 7 + 10 масс Юпитера, обнаруженная в 2010г., находится на расстоянии 8 + 15 а.е. от звезды и обращается вокруг нее за ~17 лет [1,2]. У Веги планета пока не найдена, но присутствующие в окружающем ее диске большие твердые частицы, образованные из первоначального облака газа и пыли, позволяют предположить, что ее газопылевой диск так же, как и диск β Pic, является протопланетной системой.

Как было отмечено в первой части работы, исследования основаны на результатах фотометрических наблюдений в полосах Vt и Bt, приведенных в каталоге Hipparcos [3], и спектрофотометрических наблюдений в диапазоне 325-1080 нм, хранящихся в Пулковской базе спектрофотометрических данных, ПБСД, и послуживших основой для создания Пулковского спектрофотометрического каталога, ПСК [4,5].

2. Вега.

2.1. Результаты спектрофотометрических наблюдений. Исследование результатов наблюдений Веги (а Lyr, BS=HR 7001 [6], HD 172167) в настоящей работе основаны только на спектрофотометрических данных ПБСД, поскольку в каталоге Hipparcos [3] фотометрические данные в полосах Vt и Bt для Веги не приводятся. Представленные же в нем результаты наблюдений в полосе H имеют систематические ошибки, которые мы обнаружили, но не смогли исключить из-за их сложного характера, в отличие от систематических ошибок в полосах Vt и Bt Фомальгаута (см. часть I [7]), которые нам удалось учесть. Кроме того, полоса H слишком широкая для исследования тонких эффектов, которые являются целью работы.

Как неоднократно отмечалось, результаты спектрофотометрических наблюдений хранятся в ПБСД в виде отдельных сезонных каталогов. Каждый каталог объединяет полученные в течение одного сезона результаты наблюдений всех наблюдавшихся в данном сезоне звезд.

Длительность сезона определялась неизменностью места наблюдений, телескопа, спектрального диапазона и регистрирующей аппаратуры и составляла от нескольких месяцев до нескольких лет. Результаты наблюдений квазимонохроматической освещенности от звезды, $E(\lambda)$, освобождались в процессе обработки от влияния земной атмосферы и после определения и учета спектральной чувствительности аппаратуры представлялись в абсолютных энергетических единицах, эрг см⁻² с⁻¹ см⁻¹.

В сезонном каталоге, *k*, в каждой длине волны, λ, исследуемого спектрального диапазона (см. табл.1) с шагом 2.5 нм представлены следующие результаты: усредненная по всем наблюдениям (*i* - номер наблюдения, *N*, - количество наблюдений) квазимонохроматическая величина звезды,

 $m_k(\lambda) = \sum_{l=1}^{N_k} m_l(\lambda) / N_k$, где $m_l(\lambda) = -2.5 \log E_l(\lambda)$; а также среднеквадратичная

Таблица 1

k	Годы	λλ, ΗΜ	Телескоп	N _k	Группа
1 4 9	1971-1973 1985-1986 1990-1991	325-737,5	A3T-7	124 16 22	I
16 17 19	1987e 1988 1989	510-1080	Цейс-600 -	28 47 22	II

СЕЗОНЫ НАБЛЮДЕНИЙ

(стандартная) ошибка средней величины, $S_k(\lambda) = S_{N_k}(\lambda) / \sqrt{N_k}$, где $S_{N_k}(\lambda)$ - стандартная ошибка одного наблюдения.

В ПСК [4,5] заносились средневзвешенные величины звезды, полученные по результатам сезонных каталогов, и средневзвешенная ошибка этих величин.

Очевидно, что при наличии микропеременности ошибка наблюдений определялась как случайными факторами, так и фактором переменности излучения.

В настоящей работе исследовался фактор микропеременности. Для отобранных звезд, для контроля наличия возможных систематических ошибок, использовались результаты, полученные в одни и те же сезоны. Большие систематические ошибки, >0^m.02, исключались в процессе обработки

Рис.1. Средние распределения энергии в континууме, $m_{\lambda}(\lambda)$, полученные в сезоны *k* в ультрафиолетовом (а) и инфракрасном (b) участках спектра Веги; на "усах" отложены ошибки средних величин; разными символами нанесены теоретические значения m_{λ} для разных температур, *T* (нормировка в λ 555 нм). результатов и создания ПСК [4,5]. Малые ошибки (≤0^m.02) при этом не рассматривались. Теперь, при исследовании микропеременности важно было застраховаться от таких ошибок.

В табл. І даны номера отобранных сезонов, k [7], в которые наблюдалась Вега. Указаны также годы наблюдений ("e" - вторая половина года); спектральный диапазон, λλ; телескоп; количество наблюдений звезды за сезон, N₄; группы, объединяющие каталоги.

Средние за сезон величины, $m_k(\lambda)$, построены на рис.1 в длинах волн реального континуума в ультрафиолетовой (а) и инфракрасной (b) областях спектра. Точки построения плавно соединены линиями разных типов для разных сезонов k. На "усах" показаны ошибки средних величин (об остальных обозначениях см. ниже).

2.2. Влияние фактора переменности. Влияние фактора переменности хорошо видно на различии средних величин, полученных в

Рис.2. Средние распределения энергии в континууме, $m_k(\lambda)$, полученные в сезоны k в инфракрасном участке спектра звёзд: а - BS 1791, b - BS 7557; в скобках указано количество наблюдений; на "усах" отложены ошибки средних величин. разные сезоны (см. рис.1b). Рассеяние величин внутри представленных сезонов являлось, согласно критерию Фишера (формула (6) в [7]), случайным.

Видно, что результаты 17-го сезона заметно отличаются от результатов остальных сезонов: потоки монохроматического излучения от Веги в 17-м сезоне систематически превосходят потоки, полученные в другие сезоны, на ~2%.

Для сравнения с другими звездами на рис.2 построены в инфракрасном участке спектра соответствующие данные для звезд BS 1791 (а) и BS 7557 (b), наблюдавшихся в тех же сезонах. В скобках указано количество наблюдений звезды. Обозначения те же. Видно, что здесь систематических расхождений данных разных сезонов нет.

Значимость различий средних величин Веги для сезонов 16 и 17, 19 и 17 была проверена по критерию Стьюдента [8]. Согласно этому критерию, если различие средних величин превосходит величину *T* (формула (2) в [7]), то различие значимо. При вычислении величины *T* были использованы следующие квантили распределения Стьюдента для доверительной вероятности 95%: $t_{0.95}(27) = 2.05$, $t_{0.95}(46) = 2.02$, $t_{0.95}(21) = 2.08$. Вычисленные по формуле (2) [7] значения $T_{16,17}$ и $T_{19,17}$ в каждой длине волны реального континуума, усредненные по длинам волн, следующие: $T_{16,17} \approx 0^{m}.014$ и $T_{19,17} \approx 0^{m}.019$. Разности средних величин, полученные для тех же сезонов и усредненные по длинам волн, равны: $m(16) - m(17) \approx 0^{m}.032$ и $m(19) - m(17) \approx 0^{m}.028$. Таким образом, $m(k) - m(17) > T_{k,17}$ при k = 16 и k = 19, т.е. различие средних величин значимо с доверительной вероятностью >95%.

2.3. Микропеременность. Фактор переменности, влияя на средние величины, влияет и на дисперсию результатов, объединенных по нескольким сезонам. Приближенная оценка этого влияния была проведена с помощью однофакторного дисперсионного анализа [8], который разлагает общую дисперсию на составляющие, характеризующие фактор случайности и фактор переменности в отдельности.

В первой части работы [7] случайная составляющая дисперсии, $S_0^2(\lambda)$, была определена для обеих групп сезонов, указанных в табл.1. Числа степеней свободы для случайной дисперсии в указанных группах следующие: $f_r = 275$ (группа I) и $f_{II} = 143$ (группа II).

Чтобы оценить дисперсию, обусловленную переменностью, необходимо определить дисперсию средних величин. Оценка дисперсии, $S_A^2(\lambda)$, средних величин Веги была проведена по формуле (5) в [7] с использованием количества каталогов и наблюдений, K и N_k , из табл.1. Вычисленная дисперсия имела степени свободы: $f_i = 2$ (группа I) и $f_{II} = 2$ (группа II). Значимость отношения дисперсий $S_A^2(\lambda)/S_0^2(\lambda)$ была проверена в каждой группе по критерию Фишера (6) в [7]: $S_A^2(\lambda)/S_0^2(\lambda) > F_{0.95}(f_A, f_0)$. Квантили Фишера для доверительной вероятности 95% для обеих групп приблизительно равны: $F_{0.95}(2.275) \approx F_{0.95}(2.143) \approx 3.0$. Отношение дисперсий $S_A^2(\lambda)/S_0^2(\lambda)$ (в среднем, по всем длинам волн) для группы І равно ~7 и для группы II ~16, т.е. неравенство $S_A^2(\lambda)/S_0^2(\lambda) > 3.0$ выполнялось для обеих групп, и влияние фактора переменности на дисперсию средних величин было значимо с вероятностью > 95%.

Таким образом, большая вероятность влияния переменности излучения на средние величины звезды и их дисперсию получена как по критерию Стьюдента, так и по критерию Фишера.

Для тех длин волн, в которых выполнялось неравенство (6) [7], была проведена оценка дисперсии фактора переменности, $S_M^2(\lambda)$, по приближенной формуле (7) [7]. Квадратный корень из этой дисперсии дал вариации звездного излучения, $\pm S_{M,\lambda}$. Они приведены в величинах (*m*) в табл.2 для группы I и в табл.3 для группы II. В таблицах даны также средневзвешенные величины, m_{λ} mean, Веги в этих группах.

Результаты табл.2 и 3 проиллюстрированы на рис.3. На рис.3а приведены наблюденные средневзвешенные величины, $m_{\lambda_n mean}$, для обеих групп

Таблица 2

± SM.X ± SM. 2 λ, ΗΜ λ, ΗΜ ma, mean ma, mean 0.012 325.0 1.282 0.014 460.0 0.616 0.009 580.0 327.5 1.277 0.017 1.328 0.007 417.5 0.334 0.009 582.5 1.339 425.0 0.379 0.014 600.0 1.423 0.010 0.012 445.0 0.517 0.013 627.5 1.567 447.5 0.540 1.585 0.017 0.015 630.0 0.552 0.008 450.0 0.012 635.0 1.601 452.5 0.563 0.010 675.0 1.798 0.009 455.0 0.587 0.009 0.014 680.0 1.829 457.5 0.600 0.020 0.012 687.5 1.879

ВАРИАЦИИ ЗВЕЗДНОГО ИЗЛУЧЕНИЯ, ± S_{M, λ}, ДЛЯ ГРУППЫ I

Таблица З

ВАРИАЦИИ ЗВЕЗДНОГО ИЗЛУЧЕНИЯ, ± S_{M, λ}, ДЛЯ ГРУППЫ II

λ, ΗΜ	m _{λ, mean}	±S _{M, X}	λ, ΗΜ	m _{2, mean}	±SM.	λ, нм	m _{l, mean}	±S _{M, λ}
1	2	3	1	2	3	1	2	3
510.0	0.922	0.012	530.0	1.021	0.012	550.0	1.132	0.013
512.5	0.932	0.012	532.5	1.034	0.010	552.5	1.146	0.011
515.0	0.942	0.009	535.0	1.051	0.012	555.0	1.162	0.010
517.5	0.951	0.008	537.5	1.065	0.016	557.5	1.184	0.012
520.0	0.964	0.010	540.0	1.075	0.007	560.0	1.197	0.006
522.5	0.979	0.014	542.5	1.094	0.019	562.5	1.212	0.006
525.0	0.997	0.020	545.0	1.108	0.018	565.0	1.229	0.008
527.5	1.012	0.016	547.5	1.123	0.016	567.5	1.243	0.011

МОЛОДЫЕ ЗВЕЗДЫ В ГАЗОПЫЛЕВЫХ ДИСКАХ. II. 181

Таблица 3 (окончание)

1	2	3	1	2	3	1	2	3
570.0	1.259	0.009	710.0	1.976	0.017	880.0	2.603	0.012
572.5	1.274	0.006	712.5	1.997	0.010	882.5	2.629	0.007
575.0	1.288	0.009	715.0	2.006	0.010	885.0	2.655	0.008
577.5	1.299	0.007	737.5	2.127	0.006	932.5	2.748	0.022
580.0	1.310	0.007	740.0	2.137	0.008	970.0	2.880	0.023
585.0	1.337	0.008	742.5	2.145	0.015	972.5	2.885	0.026
587.5	1.350	0.009	745.0	2.157	0.016	975.0	2.895	0.031
590.0	1.361	0.011	747.5	2.166	0.016	977.5	2.897	0.023
592.5	1.372	0.013	777.5	2.286	0.012	980.0	2.896	0.018
595.0	1.384	0.012	780.0	2.293	0.015	982.5	2.902	0.016
597.5	1.398	0.007	782.5	2.304	0.015	985.0	2.906	0.017
600.0	1.413	0.010	785.0	2.316	0.013	987.5	2.913	0.015
602.5	1.417	0.014	787.5	2.325	0.013	990.0	2.922	0.014
605.0	1.432	0.014	790.0	2.344	0.013	992.5	2.928	0.018
607.5	1.445	0.014	792.5	2.355	0.015	995.0	2.936	0.016
610.0	1.462	0.017	795.0	2.362	0.017	1022.5	3.018	0.023
612.5	1.474	0.014	797.5	2.371	0.011	1025.0	3.025	0.025
615.0	1.489	0.013	800.0	2.381	0.012	1027.5	3.032	0.025
617.5	1.500	0.012	802.5	2.392	0.016	1030.0	3.041	0.022
620.0	1.512	0.012	805.0	2.405	0.015	1032.5	3.049	0.020
622.5	1.520	0.014	807.5	2.410	0.009	1035.0	3.057	0.026
625.0	1.538	0.010	825.0	2.488	0.011	1037.5	3.065	0.022
627.5	1.558	0.016	827.5	2.492	0.014	1040.0	3.074	0.019
630.0	1.572	0.013	830.0	2.503	0.016	1042.5	3.083	0.019
632.5	1.577	0.013	832.5	2.511	0.016	1045.0	3.085	0.016
635.0	1.587	0.012	835.0	2.518	0.018	1047.5	3.101	0.021
637.5	1.595	0.008	* 837.5	2.530	0.014	1050.0	3.112	0.019
640.0	1.606	0.013	840.0	2.533	0.010	1052.5	3.121	0.021
642.5	1.618	0.011	842.5	2.535	0.009	1055.0	3.130	0.022
645.0	1.634 -	0.016	845.0	2.543	0.011	1057.5	3.135	0.018
675.0	1.800	0.012	847.5	2.550	0.011	1060.0	3.142	0.014
677.5	1.812	0.008	850.0	2.556	0.007	1062.5	3.157	0.022
682.5	1.834	0.013	852.5	2.564	0.010	1065.0	3.166	0.019
685.0	1.856	0.013	855.0	2.571	0.010	1067.5	3.175	0.017
687.5	1.863	0.014	857.5	2.578	0.013	1070.0	3.183	0.014
697.5	1.919	0.008	860.0	2.581	0.012	1072.5	3.194	0.013
702.5	1.941	0.017	862.5	2.585	0.011	1075.0	3.206	0.018
705.0	1.953	0.011	865.0	2.590	0.014	1077.5	3.216	0.015
707.5	1.962	0.010	877.5	2.609	0.013	1080.0	3.221	0.020

каталогов. На рис.3b нанесены вариации наблюденных величин, $\pm S_{M,\lambda}$, полученные для тех же групп. Об остальных обозначениях см. ниже.

Далее приведен анализ полученных результатов.

2.4. Спектрофотометрическая температура. На рис.1(a,b) и За, наряду с результатами, полученными из наблюдений, нанесены теоретические монохроматические величины, m_{λ} , по данным Курутца [9] для температур 9000 К, 9500 К и 10000 К (здесь и далее теоретические данные нормированы к средней наблюденной величине в длине волны $\lambda = 555$ нм).

Как следует из сравнения наблюденных и теоретических кривых на рис.За, распределение энергии в непрерывном спектре Веги соответствует теоретической кривой с температурой ~9000 К. Согласно последним данным [10], у быстроврашающейся Веги, ориентированной к наблюдателю полюсом, полярная температура равна 10000 К, а средняя - 9560 К. По результатам спектрофотометрических наблюдений, при которых в каждой длине волны измеряется световой поток от всей звезды, температура должна быть близка к средней температуре. Однако спектрофотометрическая температура Веги оказалась ниже эффективной температуры. Более того, в разных участках спектра она разная (сравни рис.1а и 1b). Следовательно, на распределение энергии в спектре оказали влияние нетемпературные факторы.

Рис.3. а - средневзвешенные распределения энергии в континууме Веги, $m_{\lambda_{1}}$ (λ), для групп I, II и теоретические значения m_{λ} для температур T (нормировка в λ 555 нм); b - вариации излучения Веги, $S_{M,\lambda}$, для групп I, II и теоретические вариации величин, Δm_{λ} , при изменении температуры на ΔT .

Чтобы проверить, не является ли изменение монохроматических величин в разных длинах волн следствием изменения температуры фотосферы, были построены на рис.3b теоретические зависимости вариаций величин, $+\Delta m_{\lambda}$, при изменении температуры на ± 500 К. Построенные зависимости наблюдаемых вариаций величин как в сторону увеличения потоков излучения, так и в сторону их уменьшений, $\pm S_{M,\lambda}(\lambda)$, симметричны относительно горизонтальной оси. Полученная симметрия связана со способом определения вариаций путем извлечения квадратного корня из дисперсии. Однако теоретические зависимости, строго говоря, несимметричны. Остается предположить, что при малых изменениях температуры асимметрия мала.

Из сравнения кривых на рис.3b следует, что наблюдаемая зависимость $S_{M,\lambda}(\lambda)$ не соответствует теоретической зависимости $\Delta m_{\lambda}(\lambda)$ при изменении температуры: у теоретической зависимости, в отличие от наблюдаемой, изменение величины растет в сторону коротких волн. Отсюда можно заключить, что вариации наблюдаемых величин не связаны с вариациями температуры фотосферы.

2.5. Влияние окружающего газопылевого диска. Понижение спектрофотометрической температуры свидетельствует о том, что на излучение фотосферы воздействовали слои, расположенные выше нее. Такими слоями могут быть слои газопылевого диска, окружающего звезду. Слои диска, как было показано в [7], могут и поглошать излучение звезды, и рассеивать его. Поглощение газом, как и у Фомальгаута, может проявляться в понижении уровня континуума в крайних ультрафиолетовых точках спектра (см. рис.3а) и быть связано со сгущением слабых линий поглощения ионизованных атомов. При этом, исходя из наличия небольших вариаций излучения в этой области (см. рис.3b), можно предположить, что имеются вариации плотности газа вдоль луча зрения в разные сезоны наблюдений. Учитывая высокую температуру Веги, можно предположить, что ионизованных атомов в диске достаточно много. Однако из-за ориентации диска в картинной плоскости их оказывается недостаточно на луче зрения, поэтому поглощение газом сказывается на результатах наблюдений незначительно.

Наибольшую роль в рассеянии излучения в видимой и ближней ультрафиолетовой областях спектра, $\lambda < 650$ нм, играют мелкие частицы, с радиусом ≤ 0.1 мкм [11]. По-видимому, именно таким рассеянием можно объяснить уменьшение наблюдаемого светового потока от звезды по сравнению с теоретическим в ультрафиолетовой области спектра (см. рис.1а).

В длинноволновой области, λ > 650 нм, основную роль играют крупные частицы, с радиусом ≥ 1 мкм [11]. Увеличение потока от звезды, которое наблюдается в длинноволновой области (см. рис.1b), связано, скорее всего, с наложением на звездное излучение света, отраженного от пылевого диска. Доля отраженного излучения определяется, очевидно, величиной альбедо частиц и их количеством (плотностью среды). Различие вкладов отраженного света в разные сезоны может определяться крупномасштабной неоднородностью распределения пыли по диску и участием пыли в кеплеровском вращении.

3. B Pic.

3.1. Результаты спектрофотометрических наблюдений. Звезда β Ріс представлена в ПБСД только в одном сезоне, k=1. Количество наблюдений равно 4 ($N_k = 4$). Усредненная по длинам волн реального континуума стандартная ошибка одного наблюдения звезды, S_1 , равна 0^m.0239. Случайная ошибка, $S_0(\lambda)$, результатов наблюдений в сезоны группы I была определена в первой части работы [7]. Она, в среднем, составляет 0^m.0345. Как видно, $S_1 < S_0$. Следовательно, никакие факторы, кроме случайных, не участвовали в рассеянии результатов.

На рис.4 приведено среднее распределение энергии в реальном континууме звезды, полученное в сезоне 1. На отрезках отложены ошибки средних величин. Здесь же нанесены в разных длинах волн теоретические монохроматические величины для температур T = 8000 К и T = 9000 К по данным Курутца [9]. Эффективная температура звезды равна 8073 К [12]. На рисунке видно, что распределение энергии в ее спектре практически

Рис.4. Распределение энергии в непрерывном спектре в β Ріс, полученное в первом (k = 1) сезоне, $m_{\lambda}(\lambda)$, и теоретические значения m_{λ} для температур *T*; на отрезках отложены ошибки средних величин.

совпадает с теоретической кривой соответствующей температуры.

3.2. Результаты фотометрических наблюдений. В каталоге Ніррагсов [3] ряды результатов наблюдений звезды β Ріс в полосах Ві и Vi насчитывают 164 члена. Для поиска микропериодичности в рядах был применен Фурье-анализ. На рис.5а показан спектр мощности, 10^5 PW, для ряда *V*. Максимальный пик (помечен вертикальной штриховой прямой), соответствующий периоду p = 4.462 d, больше уровня шума в 6.54 раза. Ошибка периода, полученная из ширины пика, равна ±0.03d. Фазовая кривая, построенная с периодом 4.462 d, приведена на рис.5b. По оси абсцисс отложены значения фазы, *ph*, по оси ординат - разности *Vt* - *Vt* (*Vt* - средняя величина в ряду наблюдений). Через точки проведена линия приближенной регрессии (синусоида) с амплитудой 0^{тв}.0085. Корреляционное отношение, определяющее силу связи точек с регрессионной кривой, равно 0.281 - связь значима с доверительной вероятностью, превышающей 95% [8]. (Спектр мощности в полосе *Bt* показал несколько пиков, среди которых выделить основной не удалось, поэтому не приводится).

4. Дискуссия.

4.1. Неизвестная планета? Полученный для β Ріс период микропеременности с амплитудой 0^m.0085 равен $p = 4.46 \, d \pm 0.03 \, d$. Если бы эта переменность была связана с вращающейся вокруг звезды планетой, то, согласно 3-му закону Кеплера, планета находилась бы на расстоянии ~0.098 а.е. от звезды. Скорость ее движения по орбите составляла бы ~240 км/с. Однако при изучении лучевых скоростей авторы [13] не обнаружили у звезды внутренних планет на расстоянии от 0.03 а.е. до 1.2 а.е. Напомним, что единственная пока обнаруженная планета, названная β Ріс b, находится на расстоянии 8 + 15 а.е. [1,2].

4.2. Пульсации? Можно предположить, что полученная микропеременность связана с пульсациями β Pic. На наличие пульсаций звезды указывалось и в упомянутой работе [13]. Правда, период пульсаций, полученный в этой работе, составлял ~30 мин, что позволило авторам сравнить их с пульсациями звезд типа δ Scu. Пульсации же, если они существуют, полученные в настоящей работе, имеют бо́льший, чем в звездах типа δ Scu, период, 4.46 d (период в звездах типа δ Scu составляет 0.01 + 0.2d [14]). Кроме того, расположение точек (V_1 - V_1) на рис.5b в зависимости от фазы β Pic напоминает асимметричную кривую блеска звезд типа δ Сер: медленное падение блеска и быстрый его подъем (синусоида является лишь аппроксимацией фазовой зависимости). Однако пульсация β Pic в отличие от пульсаций звезд типа δ Сер имеет очень малую (0^m.0085) амплитуду.

4.3. Крупномасштабная неоднородность околозвездного диска? Возможно, что сушествует и третья причина переменности β Ріс – периодические затмения звезды областями околозвездного диска с повышенной плотностью частиц. На наличие крупномасштабной неоднородности окружающих дисков указывает анализ результатов наблюдений Фомальгаута и Веги. Для утверждения наличия неоднородности в диске β Ріс требуются дополнительные исследования.

5. Заключение. Таким образом, на основе исследования результатов спектрофотометрических наблюдений Веги в диапазоне длин волн 325-1080 нм, полученных в разные годы, было показано влияние на ее спектроэнергетических кривых газопылевого диска, окружающего звезду. Воздействие диска выражалось как в рассеянии излучения малыми частицами в ультрафиолетовой области, так и в повышении светового потока в длинноволновой области за счет отражения излучения звезды на крупных частицах. В результате спектрофотометрическая температура звезды оказывалась ниже эффективной температуры звезды.

Была получена микропеременность квазимонохроматических величин звезды примерно на 0^m.01÷0^m.02. Эта переменность не была связана с

МОЛОДЫЕ ЗВЕЗДЫ В ГАЗОПЫЛЕВЫХ ДИСКАХ. II. 187

пульсациями звезды, а определялась, по-видимому, крупномасштабной неоднородностью распределения пыли и газа по диску, в котором поглошающая и рассеивающая материя концентрировалась в облаках.

В силу малого количества спектрофотометрических наблюдений влияние газопылевого диска, окружающего звезду, на результаты наблюдений β Ріс обнаружено не было. По результатам же фотометрических наблюдений этой звезды были выявлены периодические изменения величины *И* с периодом 4.46 d и амплитудой 0^m.0085. Для интерпретации этого результата было сделано три предположения: наличие пульсаций фотосферы звезды, существование планеты на расстоянии ~0.1 а.е. и существование в околозвездном диске области с повышенной плотностью частиц, которая, участвуя в кеплеровском врашении, периодически затмевала звезду. Все три предположения требуют подтверждений.

В заключение отметим главный вывод работы - на распределение энергии в спектре Фомальгаута и Веги оказывает влияние окружающий звезды газопылевой диск. Он понижает спектрофотометрическую температуру звезд, воздействуя на различные области спектра (УФ и ИК) по-разному. Воздействие это - нетепловое. Различие воздействий в разные сезоны наблюдений указывает на крупномасштабную неоднородность дисков.

Главная (Пулковская) астрономическая обсерватория РАН, Россия, e-mail: rubane@mail.ru arkadi@arharov.ru

YOUNG STARS IN GAS-DUST DISKS. II. VEGA (aLyr) AND BPic

E.V.RUBAN, A.A.ARKHAROV

We analyzed spectrophotometric observations of Vega (α Lyr) made in different years in the wavelength interval 325-1080 nm and collected in the Pulkovo Spectrophotometric Catalog. For all times of the observations, the spectrophotometric temperature of the star appeared to be lower than its effective temperature. We considered two possible reasons for this discrepancy: the scattering of the radiation on small particles at UV wavelengths or reflection on coarse particles at longer wavelengths. Monochromatic stellar magnitudes of the star obtained for different times of the observations were found to differ by 0^m.01-0^m.02. We showed that this difference may be due to large-scale inhomogeneity of gas and dust density distribution within the disk. Using photometric data for β Pic from the HIPPARCOS Catalog, we revealed periodical variations in the stellar magnitude V_1 with the period 4.46 d and the amplitude 0^m.0085. To interpret this result, three suggestions were considered: pulsations in the star's photosphere, the presence of a planet at the distance ~0.1 AU from the star and the existence of a region of high particle density in the circumstellar disk, which periodically eclipses the star in the course of Kepler's rotation. All these suggestions should be confirmed with the use of independent techniques.

Key words: Vega: B Pic:spectrophotometry:photometry:microvariability

ЛИТЕРАТУРА

- 1. A.-M.Lagrange, M.Bonnefoy, G.Clauvin et al., Science, 329, 57, 2010.
- 2. S.P.Quanz, M.R.Meyer, M.A.Kenworthy et al., Astrophys. J., 722, L49-L53, 2010.
- 3. The Hipparcos and Tycho Catalogues, ESA SP-1200, ESA, 1997.
- 4. G.A.Alekseeva, A.A.Arkharov, V.D.Galkin et al., Baltic Astronomy, 5, 603, 1996.
- 5. G.A.Alekseeva, A.A.Arkharov, V.D.Galkin et al., Baltic Astronomy, 6, 481, 1997.
- 6. D. Hoffleit, C. Jascek, The Bright Star Cataloge, New-Haven, p.472, 1982.
- 7. Е.В.Рубан, А.А.Архаров, І часть, в печати.
- Е.И.Пустыльник, Статистические методы анализа и обработки наблюдений, М., Наука, с.288, 1968.
- 9. R.L.Kurucz, Astrophys. J. Suppl. Ser., 40, 1, 1979.
- 10. Hil Graham, A.F.Gulliver, S.J.Adelman, Astrophys. J., 712, 250, 2010.
- 11. Г. Ван де Хюлст, Рассеяние света малыми частицами, ИЛ, 1961.
- 12. E.Di.Folco, F.Thevenin, P.Kervella et al., Astron. Astrophys., 426, 601, 2004.
- 13. F.Galland, A.-M.Lagrange, S.Udry et al., Astron. Astrophys., 447, 355, 2006.
- 14. General Catalogue of Variable Stars, Samus+, 2007-2011.