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Radiative transfer (RT) problems in which the source function includes a scattering-like 
integral are typical two-points boundary problems. Their solution via differential equations 
implies to make hypotheses on the solution itself, namely rhe specific intensity /(r; n) of the 
radiation field. On the contrary, integral methods require to make hypotheses on the source 
function S(t) . It looks of course more reasonable to make hypotheses on the latter because 
one can expect that the run of 5(r) with depth be smoother than that of /(t; n). In previous 
works we assumed a piece-wise parabolic approximation for the source function, which warrants 
the continuity of S(r) and its first derivative at each depth point. Here we impose the 
continuity of the second derivative S"(r). In other words, we adopt a cubic spline representation 
to the source function, which highly stabilize the numerical processes.
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1. Introduction. Some years ago we proposed a new algorithm, the 
Implicit Integral Method (IIM), to solving those radiative transfer problems in 
which the specific source functions (one for each frequency and direction pair) 
depend linearly on the radiation field via a single quantity independent of both 
frequency and direction. In the paradigm instance of radiative transfer through an 
ideal medium formed by atoms with only two energy levels (Two-Level Atom 
model), this quantity is the integral over frequencies of the mean specific intensity 
of the radiation field, weighted with the spectral profile (Paper I [1]).

Because it is independent of both frequency and direction, such a quantity 
constitutes a single scalar coupling for all the specific RT equations, and can 
be chosen in a natural way as the protagonist variable for the numerical solution 
of the RT problem. This choice is the distinctive and essential feature of our 
IIM: to work with a quantity which is independent of both frequency and 
direction brings about that the method does not require to store and invert 
huge matrices like in the customary numerical algorithms employed in RT 
problems. We have already remarked in Paper I [I] that our algorithm is a 
mere phenomenological representation of the actual physical process. Because 
of that and due to the lack of a matricial structure, the advantages of the IIM 
in terms of reliability, accuracy and robustness could be self-evident, as well 
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as the conspicous saving of both computational time and memory storage it 

makes possible.
The aforesaid advantages suggested us the possibility to employ the IIM also 

in the computation of stellar atmospheres models, where we must solve many 
(some hundreds) RT equations, one for each frequency. The source function 
of each specific RT equation is here the weighted mean of a term that includes 
the mean specific intensity of the radiation field through a scattering-like 
integral with a thermal contribution given by the Planck function BV(T). The 
paradigm problem of the self-consistent temperature correction when computing 
stellar atmosphere models was considered in Crivcllari and Simonneau [2].

First of all, we must recognize that the geometrical structure of the system, 
that is the sequence of the discrete atmospheric layers, must be necessarily the 
same for all the frequencies. But we must also recognize that for any given 
frequency some layers do not contribute to the formation of the spectrum. They 
do not take an effective part in the radiative transfer process because cither they 
are exceedingly transparent (i.e. exp{- Arv} = I) or they correspond to optically 
very deep regions (i.e. exp{-Arv} = 0). The layers intermediate between the 

above two groups constitute the specific spectral formation region. However all 
the layers of the structure must be taken into account in the numerical 
algorithm, irrespectively of the frequency considered. Yet, due to the dramatic 
difference among the values of the opacity with frequency, different spectral 
intervals form in very different geometrical regions. That compels us to divide 
the atmosphere into very many layers in order to cover properly all the spectral 
formation intervals. On the other hand, it is matter of the run with depth 
of the data that are common to radiative transfer at all the frequencies. As 
an example, given a temperature distribution on the discrete atmospheric layers, 
the variation with depth of the numerical values of the Planck function BV(T), 
i.e. the monochromatic thermal sources, may vary enormously frequency by 
frequency. For instance, in the case of a solar-like star, from the bottom to 
the top of the atmosphere BV(T) varies by a factor of the order of 103 for 

frequencies in the visible part of the spectrum, while this factor can be of the 
order of IO1՜1 for frequencies in the range of Lyman a. Therefore a set of 
depth points suitable for a good description of the mathematical behaviour of 
the source function at some frequencies cannot be adequate at other frequencies. 
Again very many common discrete depth points are necessary in order to 
provide a proper distribution of the data for the adequate treatment of each 
monochromatic RT equation.

The foregoing requirements make it impossible in the practice to replace 
derivatives by finite differences, as in the outermost layers the optical thickness 
is almost zero for many frequencies. The use of integral methods may seem 
to be the only advisable way out, but the very large number of discrete optical 
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depth points, necessary to warrant the proper treatment of the RT process at 
all the frequencies, does not advise to employ global integral methods, too.

We can get rid of the difficulties brought about by the introduction of very 
many layers on the one hand by employing our IIM, which allows us to take 
into consideration as many geometrical depths as necessary because, as already 
said, it does not require the storage and inversion of huge matrices. Moreover, 
on the other hand, we can introduce a better mathematical representation of 
each monochromatic source function 5v(rv) in order to account for the 
possible rapid variation of both the branching parameter ev (see eq. [2] later) 
and 5V(T) with respect to each specific optical depth tv. In such a way we 
can optimize the treatment of all the individual frequencies.

In the original formulation of the IIM (see the above references) we 
considered models that comprised 150-200 discrete layers between the surface 
and the bottom of the atmosphere. Inside each of them we approximated each 
specific source function 5v(tv) by an arc of parabola and imposed the 
continuity of ^(tv) and at all the NL dividing points. This piece- 
wise parabolic approximation yielded excellent results in many cases (see the 
above references). However under extreme conditions, (e.g. for Lyman a 
frequencies in. cool stars) such an approximation can introduce numerical 
instabilities that spoil the computation of the model.

To impose also the continuity of the second derivative of 5v(rv) at all 

the NL dividing points can remove the foregoing instabilities. Consequently we 
propose here a cubic spline model for each specific source function. In some 
way this model constitutes a regularization of the process to computing the 
values of the source functions. The formalism of the cubic spline approximation 
(namely a two-point boundary value problem developed to interpolate among 
the NL explicitly known values of a given function) can be employed in the 
present case although the NL values of 5v(iv) are yet unknown.

To employ the cubic spline approach in order to describe the behaviour 
of the source function in typical RT problems, where a scattering term appears 
in the source function, is the best (may be the unique) correct choice for both 
theoretical and numerical reasons. A theoretical reason is brought about by the 
non-local nature of the problem: the specific intensities and consequently the 
source function at a given depth point depend via the RT process on the values 
of the source function at all the other points of the system. Thus the numerical 
values of the source function must be computed simultaneously at all the depth 
points. Therefore such a non-local character of the physical problem must be 
represented by means of a non-local mathematical structure. Also the derivatives 
of the source function at any depth point must be formulated as a linear 
relation including the implicit values of the source function at all the depth 
points, not only as a linear relation of the implicit values of the source function 
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at each triad of consecutive depth points.
The pratical reason is for the sake of the stability of the computational 

algorithm. The cubic spline model minimizes the strain enefgy integral, that 
is the integral of the squared values of the second derivative of the protagonist 
function, namely of the variation of its curvature - i.e. the oscillations. (See, 
e.g., Rivlin [3]). That is, the use of the cubic spline approximation to the 
source function minimizes the risk of destabilizing oscillations.

From the algorithmical stand point, the kernel of the original I IM is a 
forward-elimination scheme that links the so far unknown values of the source 
function at each pair of consecutive optical depth points (xL, r£+I) by mean 
of a linear relation with known coefficients. The latter are determined by taking 
into account the RT equations that describe layer by layer the propagation of 
both the downgoing and the upgoing specific intensities. Now we realized that, 
by using the cubic spline formalism the same forward-elimination scheme can 
also be employed to link the unknown values of the second derivatives of the 
source functions, again by means of a linear relation. •

Once attained the deepest optical depth point xNL at the end of the 
forward-elimination, we can impose the bottom boundary condition (eq. (5) 
later on) to both the RT process and the cubic spline chain; in other words 
we can close the linear relation between Sv(xNL_\} and Sv(xNL) on the one 
hand, between 5;(t№_|) and S'(xNL) on the other. This allows us to recover 

the numerical values of the source functions and their second derivatives at the 
bottom, as well as those of the set of the incident upgoing specific intensities

= Then, in a succesive back-substitution scheme, we 
are in a position to compute at each depth point the numerical values of the 
source functions and their second derivatives by using the above linear relations, 
whose coefficients have been stored during the previous forward-elimination.

Thanks to that we have at hand a unique algorithm to solve each specific 
RT problem under the imposed constraint that the specific source functions 
as well as their first and second derivatives be continuous at all the NL points 
of the grid chosen for the geometrical representation of the stellar atmosphere. 
In such a way we can get rid of the instabilities that may arise in the case 
of extreme variations of the source functions without paying any extra com
putational cost.

2. The mathematical background. For the sake of an easier presen
tation of the new more precise version of the IIM announced in Section 1, 
we will consider the simplest instance that yet contains all the difficulties 
intrinsic to RT astrophysical problems, namely the transport of monochromatic 
radiation through a plane-parallel medium in which matter particles can scatter, 
absorb and en.it photons. In the previous works above quoted the original 
formulation wa ' '"»lied to much more general instances. The version presented 
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here can be easily applied to such cases.
Following the customary notation, the RT equations that describe the 

evolution of the upgoing intensities 7+(r, p) and the downgoing intensities 
/’(r, p) are

±H^P(T>(l) = /t(t,p).5(t), (1)

where r denotes the optical depth and p is the cosine of the angle formed 
by the direction of propagation with the perpendicular to the plane-parallel 
layers (p ■ cos0, 0 £ p 5 1).

The source function is a weighted mean between the thermal source 2?(r) 
and the mean intensity j(r), namely

S(t) = 8 5(t)+(1-s)J(t). (2)

The branching parameter e = e(r) is the ratio of the absorption coefficient 

to the total opacity (i.e. the sum of the absorption and the scattering 
coefficient). The latter defines the scale of the optical depth t;(1-e) is 
customarily called the albedo. In terms of the upgoing and the downgoing 
intensities the mean intensity is given by

= fo [/+(T> g)+ /-k ' O)

The integral in eq. (3) is representative of any scattering integral, which may 
be different for the application of the IIM to different instances.

In the discrete ordinates approximation the integral in eq. (3) is replaced by 
the sum of the intensities corresponding to a finite number of ND directions. Then

Wfl r i
/(t)« £wy[/+(r,p7)+/-(r,py)]. (4)

j-\
For most RT problems in plane-parallel geometry (at least for stellar atmo

sphere models computations) a five-points Gauss division of the interval 0 £ p < 1 
is more than enough. The w/s are the corresponding integration weights.

The numerical solution requires the discretization of the optical depth 
variable r, too. The stellar atmosphere must be sliced into a set of NL plane- 
parallel horizontal layers, divided by the set of NL + 1 optical depths points 
{to,Ti,t2,The value r0 = 0 corresponds to the surface’and xNL to 
the bottom of the atmosphere. The computation of a fairly good model require 
that NL be of the order of two hundred.

** The values of the incident intensities onto the top surface, i.e. the downgoing 
intensities 7-(t0,p/) and those of the incident intensities onto the bottom 
surface, i.e. the upgoing intensities /+Gjv£, lL/)> must be known; they are data 
of the RT problem. In the case of a stellar atmosphere /_(t0,p) is usually 
assumed to be zero, that is there is not radiation incident onto the stellar surface. 
We will show later that the method can equally work also under more general 
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conditions. For the upgoing intensities at the bottom of the atmosphere we 
can assume that the diffusion approximation holds valid, that is

/+(rm, K/) = S(rNL)+S'(xNL)\ij + S'(xNL)p.j + S’(xNL)\i3j , (5)

which is brought about by the cubic polynomial behaviour of S(t) at depths 
immediately greater than xNL. These two families of boundary conditions are 
sufficient to ensure that the RT problem is self-consistent.

The link between the values of the specific intensities at any pair of 
consecutive optical depth points (xL,xL+i), namely any single link of the 
whole RT chain, is given by the corresponding RT equations in the integral 
form, that is

/+(T£,P/) = /+(u+i,Pj)expf--^>|+Jtt‘l5(r)expf--^Lr (6) 
k F/ J L \ J

and
/’Gub Kt) = iv)exp(- ^=-1+ f'5(r)expf- -Xit, (7)

k K/ J 4 k J
where At£ st£+։ -xl. Equations (6) and (7) are the straightforward repre
sentation of the RT process.

At the surface (i.e. for t0 =0) the set of values {7“(0, p7), J = 1, ND} 
are the initial conditions for the inward RT problem, while the set 
{I+(0, py), J = 1, ND} is the solution of the outward RT problem, i.e. the 
emergent intensities. At the bottom the set [I+(xNL, py), J = 1, ND } yields the 
upgoing initial conditions (cf. eq. (5)); the set {I~(xNL, py), J = \,ND} is the 

result of the inward RT process.
Let us now turn our attention on the cubic spline approximation to the 

source function 5(t). That is, we will assume a cubic polynomial approxima
tion inside each particular interval (t£,t£+1), defined by two consecutive 
optical depth points, as the single link of the spline chain. Anyone of these 
arcs of cubic is uniquely determined by the values of the source function and 
those of its second derivative at the end points (knots) of each interval.

To impose the continuity of the source function as well as that of its first 
and second derivative at the end points of each interval (xL, t£+| ) leads to 
the cubic spline condition

where Ar4 = xL -t£_։ and Ari+1 s t£+։ -xl. Likewise, as a consequence of 
the cubic behaviour of S(t) between xL and t£+l, it will hold that
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(9)

*9'(’ 4 *i) = № ui) - L)] + S‘(?L)+ (i o)

and
‘S”('ti) = (11)

By means of eq. (8) we are in a position to join the neighbouring links of 
the spline chain while ensuring the required continuity at the knots.

Like for the RT chain, also for the cubic spline chain we need two bundary 
conditions. Customarily these are 5'(t0) = S'(r։) and S'(xNL) = S'(xNL_i). In 

the present study we assume that 5”(t0) = S'(t։) at the surface, namely that 
the first arc of the spline chain is a parabola. On the contrary, the boundary 
condition for the spline chain at the bottom must be consistent with the 
diffusion approximation for the incident upgoing intensities I+ (tNL, p7), given 
by eq. (5), which is a consequence of having assumed also a cubic polynomial 
behaviour for S(t) at depths greater than xNL. This condition is in agreement 
with the cubic polynomial behaviour of 5(t) inside the last layer ( tW£_|, rM). 
Hence we cannot introduce now a different approach to S(t). However we can 
derive the formal value of the first derivative 5'(r) from eq. (2), that is

S'(r) = [e(t) B(t)] '+ [1 - e(t)] J (r) + [1 - e(t)]J '(r), (12)

where

J'^l) = £wdj V --------V L ■ (13)
J-l Pv

Equation (12), evaluated at the deepest optical depth point xNL will then yield 
the required lower boundary condition, as will be shown later.

Let us get back now to eqs (6) and (7). For any interval (xL, t£+1 ) the . 
arc of cubic approximating to S(r) is given by

5(,) = 5(T4)+S’(T£)(T-։i)+p-(t£)(T-Ti.)2+|s-(T£)(T-T£y. (14)

By replacing eq. (14) in eqs (6) and (7), and taking into account eqs (9) 

through (11), we get eventually
/+(։£.Pj)=/+(u+i.Py)exP-[^]+ (15)

+ ws։ (J )S(r £) + ws2 (j)S(r £+1) + wd j (J )S'(t l ) + wd 2 (J )S’(r £+։)

and
(u+i. Pj) = 7՜(T£> P/)exP- V" + 

\ r1 J J
+ ws2(j)S(t£) + ws1(J)S(t£+i) + wd2(j)5'(r£)+ wd։(j)5 (t£+i).

(16)
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The quadrature weights ws^J), ws2(j), wd,(j) and wd2(j) are computed 

straightforwardly by taking into account eqs (9) through (11) to yield
1fr\ Fi 1 1ws,(J)= 1-- +֊e 
0 J 0 (17)

ws2(J) = |- 
o

1 + —
8

e֊։, (18)

wd։(j)=p2 1*4- I՝) 
8J

5_ P
6 sje՜8 > (19)

wd2(/) = p2

—
. Ito 
+ 

co |\O 
K 

1 ֊ f. 5l1 + 3 + 8? e՜8 ’ (20)

where 8 = ■
Sometimes, when 8«1, for sake of numerical percision it may be 

necessary to recast the foregoing weights into the form

ws,(j) = -3--82 +—83 ֊—84 +—85 ----- — a6 +—-—87
lk 7 2 6 24 120 720 5040 40320 (21)

. <22)

"•.w-- 350s* +li55-^։‘ + 24T92Sj’ ®)

<«>
To conclude, eqs (15) and (16) together with eqs (17) through (20) allow 

us to write explicitly for each direction p7 the relations between Z+(t£,p7) 
and /+(tw,P/) on the one hand, between Z"(t£+1 ,p7) and Z_(t£,p.J on 
the other. These relations are linear functions of the unknown values of S(xL), 
•S'Gl+J* •S’GJ and ■S'*('T£+i)i which will play a protagonist role in the 
numerical algorithm. The cubic spline condition, given by eq. (8), impose a 
further relation between 5(t£) and S'(xL) at each knot xL.

We recall that for any frequency the specific source function is approxi
mated by an arc of cubic inside each interval (xL, t£+։ ). Therefore in the 
layers deeper than the corresponding spectral formation region, where exp {-At} 
is pratically null, the form of the weights wS|(j), ws2(/), wd((j) and wd2(/) 

given by eqs (17) through (20) warrants that the intensities Z+(t, p7) recover 
there the form of eq. (5), originally assigned at the bottom of the atmosphere 
(i.e. at xNL). That is to say, the boundary condition, initially assigned at the 
bottom, is transported up to the end of the spectral formation region, keeping 
its form in a natural.way. On the other hand, in the outer layers beyond the 
region of formation, where exp {-At} approaches unity, eqs (6) and (7) warrant 
that Z+(t, kJ and Z"(t, py) keep constant. Thus, albeit the total number NL 
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of layers exceed that required by the proper physical treatment of the formation 
region for each single frequency, such an excess does not affect the numerical 
computation of the protagonist variables. That is to say, frequency by frequency 
the effective transport of the specific intensities is performed in a natural way 
inside its own region of formation, provided that care has be taken to select 
the geometrical width of the stellar atmosphere system so that, as already 
stressed in the Introduction, the former include the region of formation for 
all the frequencies.

We have then at hand all the mathematical tools that will allow us to solve 
the global RT problem in the same way as in the original IIM scheme (see 
Paper I [1]).

However only to warrant the continuity of the two first derivatives of the 
source function is not enough to avoid the occurence of instabilities. As in the 
cubic spline fundamental equation (eq. (8)) the protagonist variables are the 
function itself and its second derivative (both tied through their values at any 
set of three consecutive points), also in the RT elimination scheme the source 
function and its second derivative must be the protagonist variables.

In a previous attempt we formulated the equations (15) and (16), which 
describe the propagation of the upgoing and downgoing intensities, in terms 
of 5(t£), S(t£+i), 5'(t£) and S'(r£+() after the elimination of 5'(t£) and 
*S,<’(Tz.+i) g>ven as functions of S(t£), 5(t£+1), 5"(t£) and 5'(t£+1) thanks 
to the cubic behaviour of S(t). In the actual version we describe the 
propagation of the aforesaid intensities by means of S(yL), S(xL+i), 5'(t£) 
and ^'Gi+j), again by means of the cubic behaviour of S(r). From the 

mathematical point of view both representations should yield the same results, 
but from the numerical standpoint it looks much better to work directly with 
the second derivatives 5'(t£) and S'(r£+|), because the fundamental equation 
(8), that links the sequence of succesive layers in the cubic spline scheme, 
requires the variables 5(t) and 5”(r).

In the present formulation of the propagation equations (15) and (16) the 
integration weights WS|(J) and ws2(j), given by eqs (17) and (18), account 

strictly for the linear piecewise approximation to any monochromatic source 
function 5v(r). The remaining weights, .wd։(j) and wd2(j), account for the 

deviation from the linear behaviour, either parabolic or cubic. Whenever 
wd,(j) and wd2(j) take on small values, the linear approximation is more 
than enough. This is the case in the outermost layers, where it holds that 8 < 1 
and 83 «1; the linear approximation is automatically recovered, as only the 
weights ws,(j) and ws2(l) account for the variation of the source function 
in optically thin layers. That is to say, in the practice only S(t£) and S(r£+1) 
take part in the elimination scheme. In other words, the effects of a non-linear 
behaviour play the role of a perturbation of the linear behaviour.
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In the original formulation of the IIM (Paper I), we employed the variables 
S(t£+1), and •s"(T£+i)’ together with the corresponding inte

gration weights, in order to describe the propagation of the upgoing and 
downgoing intensities between any pair of optical depth points xL and t£+1 . 
Whatever their behaviour (linear, quadratic or cubic), all the four variables and 
the relevant integration weights took an active part in the elimination scheme, 
both from the theoretical and the numerical standpoint. This can have been 
at the origin of the instabilities that showed up, above all in the regions of 
small optical depth. The actual version of the IIM, due to the above mentioned 
reasons, results certainly more reliable.

3. The Forward-Eiimination/Back-Substitution scheme. As al
ready said, we will work with a set of fundamental variables whose values are 
unknown: the upgoing and downgoing specific intensities /*(*£, H/), the 
corresponding source functions and their second derivatives S’(xL). The 

major aim of this section is to derive linear relations among the values of the 
foregoing fundamental variables at the two consecutive optical depth points t£ 
and t£+| that delimitate each of the layer ( t£, t£+։ ) succesively under study. 
The coefficients of these relations are easily computed, and will be denoted 
in the following by bold face symbols.

3.1. The algorithmic representation of the upper boundary con
ditions. We start necessarily with only one half of the data of the problem, 
namely the set of the downgoing intensities incident onto the upper boundary 
layer at r0 = 0, i.e. {7“(r0, py), J = 1, ND}, that we will write in its most 

general form as

1՜ (t0 , ji/) = cm0(j) + cms 1(/).S(tq) + cms2(j )S(t ।) +
ND

+ cmdsl(j)5"(T0)+cnids2(j)5'(T1)+ £R(J, J')/+(t0, g/,). (25)
J~\

The coefficient cm0(j) accounts for the numerical value of the incident 
intensity /“(ro.py), which is usually null. The reflexion matrix R(J,/') 

takes into account the possible effects of backscattering outside the stellar 
surface. Under usual conditions it holds that also R(j, J') = 0. On physical 
grounds it is hard to justify the dependence of /-Go>.Mv) on the values of 

the source function and its second derivative at points t0 and t, through the 
coefficients cmsl(j), cms2(j), cmdsl(j) and cmds2(/). It is rather an 

algorithmical requirement, as these coefficients allow us to link linearly the 
values of the protagonist variables between two consecutive optical depth points. 
Consistently with the upper boundary conditions, the latter coefficients have 
to be set equal to zero.

At the end of the treatment of radiative transfer in the first layer (as well 
as in the succesive ones) some of these coefficients will take on values different 
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from zero. These new values can overrun the previous memory storage, because 
the current relation for the downgoing intensities at r0 = 0 will not be 
necessary any longer.

Inside the forward-elimination scheme for the RT process we must propagate 
not only the upgoing and downgoing specific intensities (which brings about the 
propagation of the source function as defined by eqs (2) and (3)), but also the 
second derivative S”(t) of the source function in the cubic spline scheme.

As already said, we assume that in the first layer (t0, ) the source function 
5(t) can be approximated by an arc of parabola, which implies that 
S’GoJ-S’Gi)- This condition will be included in the coefficients of the relation

•S'Go) = cdsO + cdsl5(To) + cds25(Tf) +
ND

+ cddsl5,*(T0) + cdds25’(T|)+ ^cdi(/)/+G0, pj), (26)
J-\

where the values of S(r0), S’G,), 5'(t0), S’(t() and the set {/+G0,py), 
J = 1, ND} are unknown. In order to fulfill the above boundary condition, all 
the coefficients in eq. (26) must be equal to zero, excepted cdss2 that must 
be set equal to one. To express here 5’(r0) as a function of .S(t0), S(t|), 
S*(t0) itself, S'Gi) and the set {/+(r0, pj), J = 1, ND} is just for algorithmical 
ease. When convenient, we will solve for .S(tq) - and for 5”(r0) - in terms 
of S(t|), S'Gi) and {/+(t|,p7)}.

3.2. The layer by layer elimination. We are going to show here how 
the treatment of the first layer (t0,T|), labelled by £ = 1, will yield the 
coefficients of the relation

ND
5(t0) = cbsO(l) + cbss(l)5,(x|)+ cbsd(l)5'(T|)+ £cbsi(l, J)/+(t|, p7) (27)

/-I

and those of the relation
ND

S’(t0) = cbdO(l)+cbds(l)5(T|)+cbdd(l)5''(T|)+ £cbdi(l, J)/+G|, py). (28) 
J-l

These coefficients will be stored in order to compute S(r0) and 5'(t0) in 
the succesive backsubstitution process, once the values of S(t։), S’Gi) as well 
as the set {Z+(r|։ pj), J = 1, ND } have been deterfnined. The above relations 
link any pair of succesive layers. As already said, the determination of these 
relations constitutes the aim of this section.

In parallel we are going to show also how to recover the initial conditions 
for Z’Gi.pj) and S’Gi), i.e. the values of the coefficients of the relations 

equivalent to eqs (25) and (26), now for t։ .
Let us detail our foregoing purpose. At the beginning of the study of each 

succesive layer - here the first one - we must consider the implicit computation 
of the corresponding source function at the upper limiting optical depth, here tq . 
The form of the incident downgoing intensities at r0, given by eq. (25), together 
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with the implicit values of the set {/+(r0> py ), J = 1, ND} allow us to compute 
from eq. (4) the coefficients of a linear relation among J(ro) and S(r0), 5(t։), 
S'(t0), S'Gi) and the set {/+(t0,Pj),/ = \,ND}. Then eq. (2), where e(t0) 
and 2?(r0) are given, will yield the coefficients of the linear relation

S(t0 ) = csO + css S(r0 ) + css2 S(t| ) +
/VO (jo՝։

+ csds 1 S'Go ) + csds2 5'(t, ) + £ csi (j) I+(t0 , py ), 
> /=1

where we have not solved for 5(r0) again for the sake of algorithmical ease.
We compute now for each direction py the quadrature weights wsl(j), 

ws2(j), wdl(j) and wd2(j) according to eqs (17) through (20) - or alternatively 

eqs (21) through (24) - for At, = t։ -t0. These weights allow us an implicit 
quadrature of the source function in the description of the propagation of the 
upgoing intensities from Z+(ri,Py) to Z+(r0, Py), and later of the downgoing 
intensities from Z֊(t0։pi7) to I ('tj>Py).

. At this point we can introduce the implicit form for /+(r0, py ) in terms 

of 5(t0). ^Gi). S'Go), ֊S"(t։) and the set {Z+(r1։ p7), J = 1, ND }, given 
by eq. (15), in eq. (25) for /“(to.Py), which is the initial condition for the 

study of the layer ( r0, t։ ). By re-arrangement of the coefficients we can write

Py ) = cm0(j)+ cmsl(j)5(T0)+ cms2(j)S(TI) +
• ND

+ cmdsl(j)5'(r0)+cmds2(j)5'(T1)+ £R(j, J')/+(t1։ py.) (30)
J'-l

for any direction p j . These new values of the coefficients can overrun the memory 
places of the previous ones, corresponding to the intial condition given by eq. (25).

We repeat the same exercice, namely to employ eq. (15) inside both the 
functional form for S(t0), given by eq. (29), and that for 5'(t0), given by 
eq. (26), in order to recover the previous form for both of them, but now 
as a function of the upgoing intensities at t| insted of r0, hence with different 
coeffficients. That is

S(t0) = csO + cssl S(r0)+ css25(t| ) +
ND

+ csdsl5”(r0) + csds2S'(T|)-i- £csi(j)Z+(r1։ p7) (31)
/=1

and

5'(t0 ) = cdsO + cdsl ■S’Go) + cds2 ) +
ND

+ cddsl S'(r0 ) + cdds2 S'(t, ) + £ cdi(/)Z+(r։, py ). (32)
7=1

Now, just by solving for 5(t0) and 5’(t0) we obtain the coefficients of the 
relations (27) and (28), earlier announced at the beginning of Section 3.2. 
These coefficients must be stored for further use. In such a way we have 
achieved part of out goal.
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At this point let us describe the propagation of the downgoing intensities from 
I given by eq. (30), to I (t|,p7) according to eq. (16). By re
arrangement of the coefficients we get the new values corresponding to the relation

/"fci.M/)= cmO(j)+cmsl(/)S(TO)+cms2(j)S(T1)+

+ cmdsl(j)5'(r0)+cmds2(j)5'(T1)+ £r(J, J')/+(t։, Kr) (33)
J'-l

for all the directions py. Again these new values of the coefficients can overrun 
the previous ones, corresponding to eq. (30).

If we introduce the foregoing eqs (27) and (28), whose coefficients we have 
just computed, in the functional form of Z’(r|,pj) given by eq. (33), by re
arrangement of the previous coefficients we derive the new ones for the relation

/-(t„ n7) = cm0(j)+cmsl(j)5(TI)+cmdsl(j)5'(tl)+ £R(J, Z'R+Gi.IV՛). (34)
/■-i

which we will cast into the form required by eq. (25) by setting equal to zero 
the coefficients cms2(j) and cmds2(j). We have thus determined the coef

ficients of the linear relation required as the initial condition at t։ , that will 
be necessary to study the propagation of the downgoing intensities in the 
succesive layer (t։, t2).

We have still to determine the initial condition for the propagation of 
5"(t), that is to say a linear relation like eq. (26), now for . It is matter 
of recovering the functional form of 5'(t։) in ordert to start the study of the 
spline chain in the layer (t։,t2). We have at hand the fundamental relation 
for the cubic spline, namely eq. (8) that links linearly 5”(t0), 5'(t։) and 
5'(r2) with 5(t0), S(t։) and S(r2).

By introducing in eq. (8) the formal expressions for S(r0) and S'(t0), 
given by eqs (27) and (28), we get easily the coefficients of the equation

S'fïj ) = cdsO + cdsl S(t| ) + cds2 S(t2) +
‘ ND

+ cddslS'(T|) + cdds21S’'(T2)+ £cdi(j)/+(r|, pj), (35)
J=1

akin to eq. (26), the bootstrap at r0, that was the initial condition to studying 
the layer (r0, t։). Equation (35), together with (33) that is the initial condition 
for the treatment of radiative transfer, will allow us to repeat the foregoing 
procedure for the layer (t1։t2). This scheme is then iterated layer by layer 
till the bottom of the atmosphere.

3.3. The solution at the bottom and the Back-Substitution. At 
the end of the forward-elimination scheme we have at hand the full set of 

coefficients of eqs (27) and (28) for each optical depth of the set {r0> t։, •••> xnl-\ }• 
The explicit values of and as well as those of the set of the 
outgoing intensities {pj), J = 1, ND} have now to be computed in the 
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back-substitution scheme.
For the sake of a more clear exposition of the mathematical solution at 

the bottom we will rewrite eqs (27) and (28) for xNL, that is

) = cbsOQVL-1) + cbss(7V£-1)sGm )+

+ cbsd(7V£- \)S'(xNL) + cbsi(JV£- 1, Gm> Pj )
J=l

and
S'Gm-1) = cbd0(7V£- 1)+cbds(7V£- 1)sGm)+

nd (37)
+ cbdd(7V£- i)S'(xNL)+ ^Tcbdi(./V£-1, J)l+(xNL, py).

/=i

Also, at the end of the forward-elimination scheme, the current values of the 
coefficients of the equation for 1՜(xNL, ixj), that is

/"Gm, Mj ) = cm0(£) + cmsl(j)5(ryvz.) + cms2(/)5(r№+1) +
+ cmdsl(j)5*(iwt)+ cmds2(J)5'(TM+1)+ £ R(J, J')/*(xNL, p7.) (38)

r

are still stored in the scratch memory. For the sake of a homogeneous algorithm 
we had kept the dependence on SGm+i) and S‘(xNL+l) through the coefficients 
cms2(j) and cmds2(j). But these coefficients are null so that S(xNL+l) and 

5*Gm+i) do not play any active role. The same algorithmical requirement 
compelled us to introduce the dummy supplementary optical depth xNL+i. ■

At this point we can apply the lower boundary condition for the radiative 
transfer, i.e. the formal expression for £+Gm>Mj) 8‘ven by eq. (5). If we 
replace this expression in the previous eqs (36), (37) and (38), by re
arrangement of terms we obtain the explicit values of the coefficients of the 
two linear relations for ■S'Gm-i) ar>d •S’Gm-i)35 a function of S(xNL), 
S'(xNL), S'(xnl) and ^"Gm), that we wii։ write as

*^Gm-i ) = ^{^Gm), ^'Gm)> •S'Gm) > ^Gm)} (39)

and

•S'Gm-i ) = ^{^Gm) > ^’Gm) > ^’Gm) > ^’Gm)} ■ (40)

Likewise, if we take into account the aforesaid expression for Z"Gm>M/), 
whose coefficients cms2(j) and cmds2(j) are null, we get also the coefficients 

of the linear relations

Z"Gm> K/) = ^{^Gm), S'(xnl)> S’(xnl)’ ^'Gm)I (41) 
for each direction pj .

In the forward-elimination, at the beginning of the study of each layer 
(t£, T£+1.), we have formally computed the mean intensity /Gz.) anc* 
corresponding source function S(xL) at the upper optical depth xL. That is 

to say, we have not yet used the relation given by eq. (2) at the last optical 
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depth xNL. Let us do it here.
Equation (5) for I and (41) for allow us to compute

via eq. (4) the coefficients of a linear relation like

j(xNl) = , S'(xNL), S’(xNL) , S"(xNL)}. (42)

Now thanks to eq. (13) we can compute also the coefficients of the linear relation

J (xnl)~ •$*(*№.)» (43)

By means of eqs (2) and (12) we can eventually derive the explicit coefficients 
of the linear relations

$(xnl) ~ > $'(xnl), S’(xNL), 5'(t№)} (44)

and
֊S”(TA7.) = ■£f?U‘S(TJvz.) > S'(xNL), S‘(xNL), S'^/vi)} . (45)

The two latter relations are the independent conditions to close both the 
radiative transfer and the spline chain.

According to the cubic approximation for S(t), 5'(tm) is a linear function 
of S(xnl)> and S'(xNL), as shown by eq. (9). The
"physical" equation (45) and the spline equation (9) lead to a new linear 
relation among S^x^), S'(xNL_i), S(xNL) and S'(xNL) that, together with 

eqs (39), (40) and (44) lead easily to the explicit values of the latter four 
variables. Consequently we easily obtain also the values of S'(xNL) and

The explicit values of these variables at xNL allow us to compute 
those of the set {l+(xNL, py)} through eq. (5).

Once the explicit values of 5(t)V£_1), S(xnl), S’(xnl_^ and S'(xNL) as 
well as those of the set {I+(xNL, p.j), J = 1, ND} are known, it is straightforward 
to compute those of the set {/+(t^_|, Hj), J = 1, ND} via eq. (15). Then eqs 
(27) and (28) will yield the explicit values of and S‘(xNL_2), hence
those of the set {I+(xNL_2, p7), J = 1, ND}. And so on along the back-substitution.

4. Conclusions. Our Implicit Integral Method is based on the progressive 
treatment of the different layers that consitute a model of the stellar atmosphere 
physical system, from the outermost layer (the surface) to the deepest one (the 
bottom). The protagonist variables of the method are the upgoing and downgoing 
specific intensities I^x, p) as well as the corresponding source functions that 
besides the thermal sources include a scattering-like integral into which there 
enter the foregoing specific intensities. Precisely, the study (and the elimina
tion) of each single layer (xL, ri+1) leads to a relation that links linearly the 
value S(tl) of the source function at xL with S(t£+1), the value at ti+j. 
Once obtained via the study of the last layer the relation between the values 
of the source function at the two last optical depth points, the boundary 
condition at xNL given by eq. (5) makes it possible to compute the explicit 

values of S(xNL) and •S'(t/v£_i), hence all the others.
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In order to design the required elimination scheme it is necessary to employ 
a mathematical model for 5(r). In principle the simplest and easiest model 
would be a piece-wise linear one, but the discontinuity of the first derivative S'(r) 
at each knot xL can imply severe errors and possible numerical instabilities 
because the above discontinuity is incompatible with the radiative transfer (RT) 
process itself, where both p) and their first derivatives must be continuous, 
and therefore also the mean intensity and its first derivative. Thus the 
foregoing model cannot be correct, but for extreme cases of the thermal sources.

A piece-wise parabolic model warrants the continuity of S'(t) at all depth 
points. Such a model shall include also S'(r) as a protagonist variable in the 
process of progressive elimination of the atmospheric layers. Hence S'(x) must 

be put into relation with the foregoing protagonist variables, which can be done 
either mathematically or physically.

From the mathematical standpoint we can introduce S'(r) by means of 

the formula

which could however introduce numerical instabilities because of the difference 
between the two terms in the right-hand side, above all in the back-substitution 
process that works with explicit values. On the other hand, from the physical 
standpoint 5"(t) could be included by taking into account at all the optical depth 
points the equations (12) and (13) for the derivatives of the source function. 
However, in case that e(r) and B(x) show large variations (as it is the case of 
the formation of Lyman a in cool stars), severe instabilities may appear, too.

These drawbacks can be avoided by introducing a piece-wise cubic approxi
mation, where a further protagonis variable has to be included, namely the second 
derivative S'(r). That is, by means of a cubic spline model that automatically 

warrant the continuity of S(t) and its first two derivatives. To circumvent the 
explicit calculation of the derivatives makes the above difficulties vanish. •

The source function at each depth point xL will be expressed as 
a linear function of S(rL+1) and *S”(tz>+|). Therefore we shall transmit from 
any optical depth to the next one also the (implicit) value of 5'(t£+։). This 
is achieved thanks to the fundamental relation that assures the continuity 
properties imposed by the cubic spline condition (cf. eq. (8)). However the 
propagation of S(r) and 5”(r) via a cubic spline model constitutes a twopoint 
boundary problem. Nevertheless this is perfectly compatible with the treatment 
of the transmission of the specific intensities, as it is performed in the scheme 
for the solution of the two-point boundary value RT problem. Both propagation 
processes can be treated simultaneously.

Under these conditions we can warrant the elimination of many of the causes 
of instability that can spoil the algorithm for the solution of the system of specific
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RT equations coupled through a scattering-like term in the source function, 
whose initial conditions are assigned at different points of the physical system.
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ИСПРАВЛЕННЫЙ ВАРИАНТ НЕЯВНОГО 
ИНТЕГРАЛЬНОГО МЕТОДА РЕШЕНИЯ ЗАДАЧ՜

ПЕРЕНОСА ИЗЛУЧЕНИЯ

Э.СИМОНЮ1, О.КАРДОНА2, Л.КРИВЕЛЛАРИ3

Проблемы переноса излучения (ИГ), в которых функция источника содержит 
интеграл рассеяния, являются типичными двуточечными граничными задачами. 
При решении соответствующих дифференциальных уравнений приходится 
делать предположения относительно решения, а именно, относительно удельной 
интенсивности поля излучения /(т;л). В противоположность этому при 

использовании интегральных методов, предположения относятся к функции 
источника 5(т). Последнее кажется оправданным, поскольку можно ожидать, 
что по сравнению с интенсивностью 5(т) меняется с глубиной более медленно. 

В предыдущих работах для функции источника мы использовали кусочно
параболическое приближение, что гарантирует непрерывность 5(т) и ее первой 

производной в каждой точке среды. Здесь мы требуем непрерывность второй 
производной 5'(т). Другими словами, мы пользуемся представлением функции 
источника посредством кубических сплайнов, что чрезвычайно стабилизирует 
численные процессы.

Ключевые слова: численные методыжренос излучения - звезды атмосферы
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